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flexible bioelectronics can dynamically sense and monitor physiological signals, reveal real-time physical
health information and provide timely precise stimulations or treatments. Thus, the flexible bio-
electronics are playing increasingly important roles in human-health monitoring and disease treatment,
which will significantly change the future of healthcare as well as our relationships with electronics. This
Flexible bioelectronics review summarizes recent major progress in the development of flexible substrates or encapsulation
Healthcare monitoring materials, sensors, circuits and energy-autonomous powers toward digital healthcare monitoring,
Physiological signals sensing emphasizing its role in biomedical applications in vivo and problems in practical applications. A future
Disease treatment perspective into the challenges and opportunities in emerging flexible bioelectronics designs for the
next-generation healthcare monitoring systems is also presented.
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Contents
B OO 010 o« Lo (o » PPN ¢ [0
Flexible bioelectronics COMPOSILION . ... ... .ttt ettt ettt ettt ettt et e et e e et et e et e e te ittt tie et eiaesnannaennannaa... 00
2.1.  Substrates or encapsulation MAterials .. ..........c.iuinintitet ittt et te et ettt e e e e e e e, 00
2.2, Flexible CITCUILS ... ..ottt ettt ettt et et e e et e et e e ettt 00
2.21.  Liquid metals and material modification ........... ..ot i e e e e, 00
222,  Geometry architeCture deSISI .. .. ..vuut ettt ettt ettt e e e e e et e e e e et et e e 00
B TR o011 o] | o A 0[O
231, Battery ............oeiean.. .. 00
232. Solarcell.................. .. 00
2.3.3. Piezoelectricity ............ .. 00
2.3.4. Triboelectricity ............ PR 00
72 T T V3 1<) w o o) [ oy o PP 010
23.6.  Biofuel Cell .. ... e e e, 00
2.3.7.  WIreless POWeT tranS e ... ...ttt ettt et et e ettt e e ettt 00
R 21 0 11<) £ ) PRSP 0 [ )
3.1, PhySIiCal DIOSEISOIS ..ttt ettt ettt ettt et e e et ettt et et et e e ettt e e e ettt 00
3.1, Wearable DiophySiCal SEMSOIS ... ...ttt ettt ettt e ettt et e e e e e e 00

* Corresponding author.
E-mail address: linyuan@uestc.edu.cn (Y. Lin).
Peer review under responsibility of The Chinese Ceramic Society.

https://doi.org/10.1016/j.jmat.2019.12.005
2352-8478/© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Yao G et al., Flexible bioelectronics for physiological signals sensing and disease treatment, Journal of Materiomics,
https://doi.org/10.1016/j.jmat.2019.12.005



http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:linyuan@uestc.edu.cn
www.sciencedirect.com/science/journal/23528478
www.journals.elsevier.com/journal-of-materiomics/
https://doi.org/10.1016/j.jmat.2019.12.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jmat.2019.12.005

2 G. Yao et al. / Journal of Materiomics xxx (XXxX) XXX

3.1.2. Implantable physical biosensors ........................
3.2, BiOChemICal DIOSEINSOIS . ...ttt ettt ettt et e ettt e e et e e et e e ettt e e et e e e et e e e e e
3.3.  Problems faced DY DIOSEMSOTS . ... ...ttt ettt ettt e e et ettt e e e e e e e e e e e e

4, Disease treatment ..........

4.1, PharmacologiCal tNeTaPY . .. .. .vett ettt ittt ettt et ettt e e e e e e e e e e e e e e e e e e e e e
4.2, Non-pharmacologiCal theTapy . ... ...ttt e e e e e ettt et e e e e e e e e e e e
5. Conclusion and OULIOOK . ..... .o e e e e e
Declaration Of COMPELING INMEEIESE . . ...\ttt ettt ettt et et ettt et et et e e e et et e e e e e e e e et e et e ettt e et et
V24 s To 1T Tl e 0 1<) Y
S (] (<) 1 Lo/ PN

00

00
. 00
00
00
00
00
00
00

1. Introduction

With rapid development of functional materials and
manufacturing techniques, flexible bioelectronics have evolved into
playing important roles in clinic and daily life from in vitro to
in vivo [1-3]. Although conventional healthcare workflow as the
conventional clinical applications can detect the physiological sig-
nals and reveal health information, they can only offer snapshots of
the physiological condition of the body and involve large-sized
extracorporeal devices or require patient hospitalization [4]. In
comparison, rapid development in science and technology has
drastically reduced or even eliminated the spatial separation be-
tween human and flexible bioelectronics to render comfortable
wearability or implantability [5,6]. In particular, a significant in-
terest of flexible bioelectronics lies in monitoring physiological
signals in real-time, revealing timely information on the state of our
body and further providing actionable feedback for disease treat-
ment to sustain a healthy lifestyle [7,8].

In recent years, commercial wearable bioelectronics are incor-
porated into clothing and smartwatches, rendering them the ability
to monitor body temperature, measure pulse rate, and even analyze
heart waveforms [9]. However, the parameters that can be
measured with such systems are narrow in scope and have low
levels of clinical relevance/accuracy due to the sensing components
loosely coupled to the human bodies. Thus, the inability to form
stable, intimate tissue interfaces with these rigid wearable system
remains a fundamental constraint in their measurement capabil-
ities. To overcome these limitations, flexible bioelectronics
explored strategies in both material science and deterministic ar-
chitectures to achieve a low modulus close to our skin or the sur-
faces of internal organs to transduce physiological signals [10,11].
Good adhesion, absolute extensibility and mechanical impercepti-
bility are important features of flexible bioelectronics. Beyond
designing conformal bioelectronics, ascribing functionalities in
these bioelectronics are of utmost importance for high selectivity
and sensitivity to further develop a precise, dynamical and real-
time healthcare system.

Flexible bioelectronics, human body and mobile electronic de-
vices make up a physiological signal monitoring, timely treatment
and health information cloud storage system [12—14]. The design of
the flexible electronics and working principle of the biomedical
system was shown in Fig. 1. The general structure of flexible bio-
electronics is composed of a flexible substrate or encapsulation
layer, multifunctional sensors to obtain various signals, integrated
circuits to electrically process the signals and a power supply
(Fig. 1a). As shown in Fig. 1b, human bodies consist of a number of
biological systems (organs and tissues) that carry out specific
functions necessary for everyday living, and the physiological sig-
nals can be captured and monitored by flexible bioelectronics
during natural physiological processes from the human body. In
addition, as shown in Fig. 1c, the wireless transmission can be

designed to convey the analyzed data and feedback to the user for
smart health care. Based on monitoring and assessment of physical
condition, in reverse, flexible bioelectronics can also act as actua-
tors to provide timely precise stimulation or treatment [15—17].

This paper highlights the latest advances in this emerging field
of flexible bioelectronics, with particular emphasis on device
design strategies and pioneering conceptual bio-applications that
have the potential to shape the directions of future developments.
This review begins with an introductory section of strategies to
structural design principles and several concepts of flexible bio-
electronics, including flexible substrate or encapsulation materials,
integrated circuits and power sources. The second part highlights
the physiological signals sensing of flexible bioelectronics, classi-
fied based on different physiological signal types (biophysical and
biochemical signals). In addition, we summarize the biomedical
applications of flexible bioelectronics as actuators for diseases
treatment in vivo, classified according to their working modes
(pharmacological or non-pharmacological therapy). Finally, the
review concludes with an overview of key remaining challenges
and a summary of opportunities where flexible bioelectronics will
be critically important in daily life and in clinic.

2. Flexible bioelectronics composition

The general structure of flexible bioelectronics is composed of
various functional devices, including flexible substrates or encap-
sulation layers, multifunctional sensors to obtain various physio-
logical signals from human body, circuits to electrically process the
signals and a power supply [15,16,18]. As the most important
component, working mechanisms for biosensors with different
sensing targets are discussed in detail in Section 3.

2.1. Substrates or encapsulation materials

A flexible supporting substrate or an encapsulation layer is to
ensure the flexible conformal contact between human bodies and
electronics. Stretchability is a basic requirement for the bio-
electronics to conformably cover the non-developable surface of
human body or organs [16,19]. In addition, it will improve the
overall robustness to avoid mechanical failure incurred during
various human motions. From the material standpoint, the wide
availability of polymeric materials provides freedom of choice to
cater to the requirements [19]. At the molecular level, for a system
to endow mechanical flexibility and stretchability, design strategies
leverage on engineering methodologies to modify the molecular
structure and its arrangements (Fig. 2a) [20—22]. There are two
main concepts to develop electronic materials with intrinsic
stretchabilities: one approach is to tailor the molecular structure of
the polymeric to ameliorate the rigidity of the polymeric backbone,
and the other approach relies on reducing van der Waals forces
[20,21]. Many silicone elastomers, such as polydimethylsiloxane
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Fig. 1. Design and working principle of the flexible bioelectronics. (a) Schematic illustration of structure of flexible bioelectronics composed of functional devices: substrate,
sensor, circuit, and power supply. (b) Physiological signals monitoring. (c) Wireless transmission.
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Fig. 2. Substrates or encapsulation materials for flexible electronics. (a) Engineering methodologies for intrinsic stretchability [22]. (b) Biocompatibility of substrate material
[29]. (c) Self-healing material [35]. (d) Biodegradable materials for biomedical applications [32].

(PDMS) and Ecoflex, have been used extensively as proof of con-
cepts for wearable substrates due to their stretchability and ease of
fabrication. In addition, other forms of substrate exist to fulfill
different requirements. For example, textile and paper-based sub-
strates represent a specialized class of flexible and stretchable
material substrates that transcends beyond molecular engineering
[23,24]. On the base of ensuring the flexibility and stretchability of
the substrate, biocompatibility is another basic requirement since
substrate or encapsulation materials in direct contact with the body
is of critical importance for ensuring not only an irritation free
interface but also eliminating risks of allergic or toxic reactions

[25—27]. Various biocompatible materials have been developed for
biomedical applications, such as common insulating medical-grade
silicones [28—30], which have the property of non-cytotoxic to
ensure that human or animals are in a good health condition during
wearing or implanting the flexible bioelectronics (Fig. 2b).

In recent years, developments in new classes of materials also
present novel desired features such as self-healing capability and
biodegradability [15,31—34]. Self-healing materials, which are able
to plastically deform to fully match curved and dynamic surfaces,
restore their original shape/condition and further eliminate the
necessity of replenishing after damage (Fig. 2c) [35,36]. This
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material shows great potential in applications such as artificial in-
telligence and personal healthcare. Biodegradable electronic ma-
terials capable of breaking down into harmless components in body
fluid can drastically reduce pollution from electronic waste [33,34].
The biodegradable materials evolved from synthetic polymers to
natural polymers, which can be broadly categorized into organic
materials (especially polymers) and inorganic materials. For
example, cellulose, silk fibroin, and shellac are biodegradable
polymers which are present in nature (Fig. 2d) [32]. In addition,
synthetic biodegradable polymers (PVA, polylactic acid, poly-
caprolactone, polyurethane, polyethylene glycol, polylactic-co-
glycolic acid) have been utilized for biomedical applications
[16,37]. Flexible bioelectronics based on these biodegradable ma-
terials can be break down in body fluid to enable nonsurgical
removal after they have completed tissue repair.

2.2. Flexible circuits

To render the flexibility and stretchability of the bioelectronics
supported or encapsulated by flexible substrates, circuit engineer-
ing is another important factor to keep inorganic electronics stable
and durable at strained states [15,16,38]. As the important inter-
connection components of bioelectronics, flexible circuits play an
important role in electrical transmissions between the functional
components and human-machine interfaces [39]. To this end, there
are several strategies to design the flexible property of the circuits,
including liquid metals, material modification and circuit geometry
architecture design.

2.2.1. Liquid metals and material modification

Liquid metals are compelling materials for soft and stretchable
electrodes as they are metallic conductors with intrinsic infinite
deformability. As a substitute to solid-state materials, conductive
liquids may be included into elastic substrates as microfluidic in-
terconnects [40—42]. The amorphous liquid state of such materials
at room temperature, typically owing to low melting points and
high boiling points. Liquid metals can be injected into an enclosed
elastomeric substrate with micro channels, which can provide
mobility and maintain conductivity of liquid metals under large or
3D deformations. Liquid-phase eutectic gallium indium (EGaln),
different from mercury, offer great promise for flexible bio-
electronics due to low toxicity, high conductivity and good elec-
trical stability [43—45]. As an example, Majidi group reported soft
and highly deformable circuit interconnects that are electrome-
chanically stable under strained state (Fig. 3a) [46]. The circuit is
composed of EGaln droplets embedded in a soft insulating silicone
elastomer, and the droplets rupture to form new connections with
neighbours when damaged to form locally conductive pathways
with high electrical conductivity, which can act as electrically self-
healing circuit interconnects under extreme mechanical damage.
However, circuit damage and leakage of the liquid metal is a huge
hidden danger to human health [47].

To avoid the toxicity of liquid metals, biocompatible metallic-
based components can form the electrical interconnects owing to
their inertness and high electrical conductivity [15,48]. The chal-
lenge is to convert these rigid metallic elements to be flexible and
even stretchable. In this regard, these metallic materials can be
deposited or printed on the stretchable substrates as flexible in-
terconnects using micro/nanofabrication methods. Importantly, by
reducing the lateral and vertical scale of the materials, the load-
bearing stress will be transferred to the base substrate. By
altering the chemical processes, materials of different conforma-
tions may be built from OD nanoparticles, 1D nanowires (NWs), to
2D nanosheets/nanomesh [19,49]. Intuitively, different shapes of
nanomaterials define the percolation network and junction-

junction contacts, resulting in varying degrees of mechanical
robustness and electrical stability. Thus, many researchers have
sought different shapes and sizes of nanomaterials to achieve
better performance. NWs have been particularly demonstrated and
well utilized in many flexible electronics applications, owing to its
efficiency for carrier flows [15,19]. For example, Ag and Cu NWs
have been acknowledged as ideal candidates for stretchable in-
terconnects. The NW provides strength and size dependent elastic
property compared to bulk Ag or Cu, and the deformable NW
percolation network also contributes to minimal conductivity
change under strain. Graphene/Ag NWs hybrid structures as high
performance, transparent, and stretchable electrodes were re-
ported by Lee and co-workers (Fig. 3b) [50]. The percolating net-
works of metal-NWs with high densities above the percolation
threshold were integrated into graphene, which ensure low resis-
tance (~33 Q/sq), high transmittance (94%), robust conductivity
stability and good mechanical flexibility and stretchability
(maximum stretching strain of 100%). This hybrid was utilized to
build soft eye contact lenses as an example of wearable application.
However, the circuit based on material modification usually in-
volves complex processes and functions within a limited range of
strain [49,51]. Thus, researchers are constantly exploring other
circuit flexibility methods.

2.2.2. Geometry architecture design

Instead of modifying the materials themselves to achieve flexi-
bility and stretchability, using geometry architecture design to
realize flexible circuits by traditional inorganic materials is also a
hot research field. Utilizing wavy structure can obtain promising
stretchablilty to avoid material fractures while maintaining high
conductivity performance under strain, due to the fact that wavy
structures accommodate compressive and tensile strains through
changes in the wave amplitudes and wavelengths rather than
through potentially destructive strains in the materials themselves
[39,58]. The strain induced into the conductive materials during the
stretching/relaxing cycles is the main limiting factor for the
longevity and overall performance of the stretchable conductor.
Rogers group fabricated periodic wave-structure silicon nano-
membranes on silicon elastic substrates and systematically studied
the mechanical properties [59—61]. Recently, Chen group reported
a high stretchable and conductive Au electrode with wavy structure
for neural signal recording (Fig. 3¢) [52]. The results indicated that
the electrodes have high stretchability and excellent stability
(10000 cycles), which is benefit for long-term monitoring.
Although the wavy structure made a breakthrough in geometric
design for circuit flexibility, it only works stably within a limited
small strain range.

Serpentine is another novel approach enhance the flexibility
and stretchability of interconnects within a large strain range,
which exploits deterministic architecture to accommodate strain
[53,62,63]. Rogers group recently reported epidermal electronic
systems based on serpentine structures (Fig. 3d, left) [53], which
provide a conformal contact with human skin via the action of van
der Waals forces and keep reversible and elastic responses against
large deformations. The serpentine structure has ultralow effective
moduli, bending stiffness, and area densities. Particularly, contact
conformity can be promoted with serpentine structure width
decreasing, which is attributed to high mechanical robustness and
high performance in the process of signal recording. Thus, the
serpentine interconnect circuits were applied in a lot of multi-
functional epidermal devices to ensure stable electrical conduction.
For example, the stretchability of the stretchable lithium ion bat-
tery system is more than 4 times larger than previous reports,
enabling high areal coverages (50%) of active materials (cathode
and anode) at the same time (Fig. 3d, right) [54]. It is believed that
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Fig. 3. Design strategies of circuit for flexible bioelectronics. (a) Circuit of liquid metals [46]. (b) Graphene/Ag NWs hybrid structures [50]. (¢) Conductive Au electrode with wave
structure [52]. (d) Stretchable serpentine electrodes [53,54]. (e) Stretchable kirigami electrodes [55,56]. (f) 3D architectures through compressive buckling [57].

the serpentine structure will play a key role in flexible
bioelectronics.

With high tensile strain (>50%), to achieve stretchability
without degradation of electrical and mechanical properties is very
challenging even with extraordinary properties of nanocomposites
and stretchable serpentine structure. Kirigami, known as the art of
paper cutting, is a novel design strategy to render stretchable
electronics, including skin-like electronics, implantable biode-
gradable devices and bio-inspired soft robotics, which offers a
universal strategy for engineering stretchable electrodes regardless
of materials [64,65]. Ren group reported a highly stretchable and
transparent Au nanomesh electrodes on elastomers with kirigami
patterns [55]. Through macroscopic laser-cut paper and micro-
scopic observations of nanomeshes (Fig. 3e, top), they concluded
that larger ratio of mesh-size to wire-width leads to better
stretchability. In addition, Won and co-workers developed a
transparent and stretchable kirigami electrodes consisting of ul-
trathin and flexible AgNWs/cPI composites (Fig. 3e, bottom) [56].
Diverse shapes of stretchable electronics with multivariable con-
figurability can attribute to tailor-designing the stretchability range
for anywhere on the body. These kirigami engineered patterns have
an ultrastretchability (O to over 400%), excellent strain reversibility
(>10000 cycles). The stretchability range of the circuit with kir-
igami structure can be tailored depending on the skin-modulus,
body parts, human size, and other application requirements.

Another approach to achieve constant conductivity of

interconnects is to utilize 3D architectures, which are free from
material fracture and self-contact [66—68]. Xu and co-workers
developed a strategy to assemble materials into 3D architectures
through compressive buckling (Fig. 3f) [57]. To fabricate 3D archi-
tectures, the flexible substrates are initially pre-stretched, followed
by releasing after the conductive material deposition. More than 40
representative geometries were successfully assembled and stud-
ied systematically from the aspects of experiment and mechanical
simulation. Although great advancements have been achieved in
developments of 3D architectures, the development of 3D-archi-
tecture circuits remains in its infancy.

2.3. Power source

Flexible and stable power source is essential for allowing the
tissue-mountable bioelectronics to function reliably and continu-
ously in bio-integrated platforms, which are demanding re-
quirements and great challenges for power design strategies
[16,19].

2.3.1. Battery

To meet requirements of bio-interfaced applications, commer-
cial rechargeable batteries are the most obvious choice because
they were first applied in portable electronic devices [18,75,76].
Rogers group recently developed a rechargeable lithium ion battery
technology fabricated on elastomer and connected by serpentine

https://doi.org/10.1016/j.jmat.2019.12.005
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interconnects (Fig. 4a) [54], enabling high reversible stretchability
(300%), high capacity densities (~1.1 mAhcm~2) and little loss in
capacity for recharging (20 cycles). The good performance can be
attributed to the segmented layouts and deformable electrical in-
terconnects, which provides a binding site for the conventional
power sources and flexible bioelectronics. However, this device
faces the trouble of multiple periodic charging, despite the wireless
charging function.
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2.3.2. Solar cell

Flexible solar cells (photovoltaic cell) can be adhered con-
formally to tissues and skin, and they can offer another potentially
promising strategy for battery-free power sources in flexible bio-
electronics due to mechanical and thermal stability [77—79]. Park
and co-workers developed self-powered ultra-flexible electronic
devices that can measure biometric signals with very high signal-
to-noise ratios when applied to skin or other tissue (Fig. 4b) [69].
The device showed high power-conversion efficiency (10.5%) and

(b) Solar cell

PBS
Gate —( ion

AgMOO,  goure

BHIZnO Parylene AwCH1TO|

Fig. 4. Flexible, lightweight and stable power sources. (a) Stretchable rechargeable lithium ion battery [54]. (b) A flexible solar cells [69]. (c) Flexible piezoelectric PZT ribbons
[70]. (d) Triboelectric generators [71]. (e) 3D compliant and stretchable thermoelectric coils [72]. (f) Biofuel cells for sweat sensors [73]. (g) A wireless power [74].
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high power-per-weight (11.46/g), which has been successfully used
for cardiac signal detection with a maximum signal-to-noise ratio
(40.02). This work provides a new way to dynamically monitor
physiological signals using the solar cell as the power source.

2.3.3. Piezoelectricity

As another batteryless power source, flexible piezoelectric de-
vices can also generate sufficient power from human mechanical
motion to continuously drive small epidermal biosensor with low
power consumption [70,80,81]. The performance of inorganic
piezoelectric materials is better than that of organic materials,
however, it is very difficult to apply inorganic materials into actual
devices due to their rigid and brittle properties. Rogers group
developed flexible mechanical energy harvester based on piezo-
electric PZT ribbons, enabling high efficiency mechanical-to-
electrical energy conversion from the natural contractile and
relaxation motions of the heart, lung, and diaphragm (Fig. 4c) [33].
The biocompatible device encapsulated by PI thin film has a high
voltage (~4 V) and power density (~12 pW/cm?), up to and
exceeding levels relevant for practical use in implants, which has
great potential for health/wellness monitors or non-biomedical
devices.

2.3.4. Triboelectricity

Triboelectric nanogenerator (TENG) is another candidate
battery-free power source for mechanical-to-electrical energy
conversion. Two functional layers produce electrical charges by
contact electrification and electrostatic induction during the con-
tact of two surfaces with electron affinity, while the electrical
charges between the two layers produces a voltage difference
during the separation process [82—85]. There are four fundamental
working modes of the TENG: vertical contact-separation mode,
lateral sliding mode, single-electrode mode, free-standing mode
(Fig. 4d) [71]. Contact-separation mode and sliding mode are
common working modes for the flexible bioelectronics. However,
for biomedical application, both TENG and piezoelectric devices
must be driven by stable and regular mechanical motions.

2.3.5. Thermoelectricity

Unconstrained by mechanical motions, thermoelectric genera-
tors offer an alternative approach to harvest energy through See-
beck effect [86,87]. The power density of the thermoelectric
generators is mainly determined by three factors: n- and p-type
semiconducting elements (legs), array configuration of the legs and
temperature difference between the skin and the ambient envi-
ronment [87,88]. Commercialized inorganic bismuth telluride and
antimony telluride based alloys are most common thermoelectric
materials due to their high conversion efficiency at room temper-
ature [88,89]. In the case of material determination, thickness and
power generation are a pair of contradictory factors. An in-plane
configuration leads to a decrease of power generation while
ensuring thinner device thickness. Conversely, a cross-plane
structure aligns with heat flow, resulting in improved voltage and
power output at the expense of overall thickness. To resolve this
contradiction, Rogers group recently proposed and demonstrate an
architectural solution to this problem by developing 3D compliant
and stretchable thermoelectric coils based on p- and n-doped
single-crystalline silicon (200 nm) (Fig. 4e) [72]. This approach not
only enables efficient thermal impedance matching but also mul-
tiplies the heat flow through the harvester, thereby increasing the
efficiencies for power conversion. Particularly, the 3D flexible
structure provides a multifold increase of the surface area, resulting
in higher overall heat exchange capability and higher maximum
power (2 nW). The continuous and stable power supply produced
by thermoelectric generators is ideal for flexible bioelectronics.

2.3.6. Biofuel cell

Biofuel cells can generate electrical power by harvesting the
redox biochemical reaction energy of body fluids and reaction
electrode using enzymes and/or noble metal-based as catalysts
[90,91]. The power density of the biofuel cell is mainly determined
by three factors: available amount of chemical sources in body
fluids, biochemical reaction rate and electron transfer efficiency.
Stable operation is the biggest challenge for the biofuel cells, which
is difficult because the amount of body fluid secretion is not the
same as the environment changes, considering the device must
continuously collect enough body fluids for biochemical redox,
such as sweat [92]. Recently, Bandodkar and co-workers developed
skin-interfaced microfluidic/electronic wearable sweat sensors,
which can simultaneously monitor digital lactate and glucose sig-
nals through the biofuel cell-based electrochemical sensors (Fig. 4f)
[73]. In particular, combination advantages of electronic and
microfluidic functionality can complete the collection of sweat and
real-time monitoring of sweat components more effectively.

2.3.7. Wireless power transfer

Wireless power transfer, including transmitting antenna and
receiving antenna, can also act as supply energy or power to drive
electronic devices without using other power source modules
[16,37]. Rogers group reported a stretchable and implantable op-
toelectronic device powered wirelessly (Fig. 4g) [74]. The stretch-
able antenna harvested RF power through capacitive coupling
between adjacent serpentine traces to reduce resonant frequency
and therefore miniaturize the dimensions of the antenna (100-fold
reduction at 2.34 GHz). Although the wireless power transfer sys-
tem can achieve efficient transmitted power, the transmitting an-
tenna must be powered by an external power source to drive the
entire system.

3. Biosensors

The key requirements of biosensors are the integration of
lightweight, conformal and biocompatible sensing components on
body for in situ detecting. To meet the practical requirements of
physiological signals sensing, as shown in Fig. 5, various wearable
and implantable biosensors are designed to detect relevant physical
and biochemical signals for healthcare monitoring and disease
diagnosis, where the wearable biosensors (worn on body or inte-
grated into accessories) function outside of bodies, and the
implantable biosensors have the capability of healthcare moni-
toring in vivo [5,6,17,19]. This section is devoted on the biosensor
categories classified based on different physiological signal types
(biophysical or biochemical signals).

3.1. Physical biosensors

Physical biosensors are mainly to detect physical signals such as
skin temperature, movement of the body or organs, and other
physical phenomenon caused by organs in people’s daily life. Our
skin consists of epidermis, dermis, and hypodermis, and with
embedded sweat glands, nerve endings, blood vessels, and muscle
[15,16,19]. The outside epidermal layer is an ideal surface for health
monitoring and diagnosis. In addition, implantable sensors to
derive high-quality physiological signals from internal organs such
as brain, heart, and blood vessels. A majority of physical biosensors
being investigated are strain or pressure sensors, which are vital to
motion monitoring. Even though conventional metallic strain
gauges could be as thin as a few hundred micrometers, they are
rigid, fragile, and not stretchable, which may limit their potentials
in wearable and implantable applications [4,9]. On the other hand,
the key challenge of a wearable pressure/force sensor is the

https://doi.org/10.1016/j.jmat.2019.12.005
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demand of conformally attaching to our skin or the surfaces of
internal organs and translating the physical mechanical deforma-
tion to digital signals [13,14]. Thus, flexible and stretchable physical
biosensors are being actively developed to dynamically monitor the
organ physical motion signal for healthcare.

3.1.1. Wearable biophysical sensors

Wearable biophysical sensors would enable a plethora of new
applications in electronic skin, human activities monitoring, per-
sonal healthcare and human-machine interface [3,12,19]. Recent
research interests of wearable biophysical sensors focused on
movement and physical characteristics of the skin.

Wearable strain sensors (tension and pressure) based on the Ag
nanoparticles (NPs) and carbon materials (carbon nanotubes or
graphene nanosheets) composites on polydimethylsiloxane
(PDMS) substrate using a simple and low-cost fabrication process
have been recently reported (Fig. 6a, top) [93]. For the tension
strain sensor, the composite junction resistance is consisted of two
factors: the resistance between the Ag NPs (R’), and the resistance
between the Ag NPs and carbon nanotubes (R”). This tension strain
sensor could possess high sensitivity with tunable gauge factors
(2.1-39.8), high stretchability of 95.8%, good linearity and excellent
long-time stability. For the pressure sensor, the device was fabri-
cated on a PDMS substrate with a 3D multi-layered Ag/graphene
nanosheets structure (Fig. 6a, bottom) [94], showing that the
interface contact resistance can be changed sensitively by the micro
pressure (0.1 N). Based on sensing characteristics, these strain
sensors are promising for human body motion capturing.

However, higher sensitivity is required for further device ap-
plications in the fields of real-time health monitoring, and struc-
tural design was employed to meet this requirement [100,101].
Recently, a high-performance wearable pressure sensor based on
microstructured PDMS/Ag and rough polyimide (PI)/Au interdigital
electrodes was used for real-time pulse wave monitoring (Fig. 6b)
[95]. A voice recognition wearable device was reported (Fig. 6¢)
[96], which demonstrated superior sensitivity (1.80 kPa~!), very
low detectable pressure limit (0.6 Pa), fast response time (<10 ms),
and high stability (>67500 cycles) for detection of feather-light

pressures. In addition, a novel triboelectric sensor was fabricated
to monitor the weak mechanical micromotion of the skin around
the corners of eyes (Fig. 6d) [97]. These wearable biosensors pro-
vide an promising way for human physiological signals monitoring,
disease diagnosis and health assessment, which provides a novel
design concept for intelligent sensor technique and human-
machine interaction.

To provide additional information on the changes in human
skin, wearable multifunctional sensing platforms integrated with
temperature, strain and humidity sensors have also been devel-
oped, which were able to simultaneously monitor subtle changes in
skin temperature and strain during human activity [102,103]. The
inorganic functional oxide film has rich physicochemical proper-
ties, thus the flexible or rigid device based on the oxide film has
excellent adjustable properties [104—107]. In particular, Liao and
co-workers designed and fabricated a stretchable VO,/PDMS tem-
perature sensor using transfer printing technology [58,108],
demonstrating the possibility of tuning the properties of VO, thin
films via external strain and expanding the application of VO, thin
films in flexible and stretchable devices (Fig. 6e) [98]. In addition,
due to VO, thin films are very sensitive to temperature as well as
strain, they designed a flexible breath sensor and a dual parameter
(temperature and strain) sensor with excellent sensing perfor-
mance (Fig. 6f) [99,109]. These biosensors could be easily and
conformally attached to human body and promising for prevention
of apnea syndrome.

3.1.2. Implantable physical biosensors

Implantable biosensors to derive high-quality biosignals from
internal organs such as heart, stomach, bladder and brain, are
required in some cases rather than skin-mounted sensors
[15,17,28]. Despite advances in device development, significant
risks associated with solid, non-flexible systems remain. Therefore,
flexible implantable devices to detect the biophysical signals of
organs are currently research focus. Li and co-workers completed
heartbeat monitoring in a live rat using a single zinc oxide (ZnO)
nanowire (Fig. 7a) [110]. The ZnO nanowire has successfully con-
verted the biomechanical energy from normal breathing or a

https://doi.org/10.1016/j.jmat.2019.12.005
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biosensor for voice recognition [96]. (d) A weak mechanical micromotion sensor [97]. (e) A stretchable VO,/PDMS temperature sensor [98]. (f) A flexible breath sensor [99].

heartbeat into electricity, which presents a great potential towards
implantable self-powered systems. In addition, a gastrointestinal
(GI) motility sensing device based on lead zirconate titanate (PZT)
ribbons for monitoring vital signals and ingestion within the GI
tract was reported recently (Fig. 7b) [111]. The flexible device
naturally unfolds and settles on the stomach lining in immediate
juxtaposition with the mucosa, and provides instantaneous infor-
mation on ingestion states in the GI tract. This biosensor may lead
to the development of ingestible piezoelectric devices that might
safely sense mechanical variations and harvest mechanical energy
inside the GI tract for the diagnosis and treatment of motility dis-
orders, as well as for monitoring ingestion in bariatric applications.
Specifically, for underactive bladder (UAB), researchers presented a
bio-stable actuator to empty the bladder by incorporating shape
memory alloy components integrated on flexible PTFE sheets
(Fig. 7c) [112]. The proposed actuator exhibits voiding percentage of
up to 78% of the bladder volume in an anesthetized rat after only
20 s of actuation. The high sensitivity of this sensor to the filling
status of the bladder provides a proof-of-concept for making a self-
control system for future clinical application.

Monitoring real-time pressure and temperature within the
intracranial provides essential diagnostic information for the
treatment of traumatic brain injury. Rogers’ group reported optical

biosensor systems for monitoring of intracranial pressure and
temperature (Fig. 7d) [113]. This flexible and bio-absorbable sensor
consist entirely of inorganic materials, including silicon dioxide
(~10 nm), single-crystalline Si NMs (250 nm) and adhesion layers of
amorphous silica (~200 nm). This biosensor can be implanted in the
intracranial space of a rat for monitoring intracranial pressure (ICP)
and temperature (ICT), and results demonstrate the potential
clinical utility of these systems. To obtain more comprehensive
information about the brain, direct attachment of an electrode
array on brain can be used to record electrophysiological signals
and produce a high resolution map of the physiological signals. In
general, according to working modes of sensing, the electrode array
can be classified as resistive electrodes and capacitive electrodes.
Recently, Lin group fabricated a stretchable conformal neural
resistive electrode array using thermal release transfer printing
method (Fig. 7e) [62]. Compared with stainless-steel screw (rigid)
electrode, the stretchable electrodes exhibit a higher signal-to-
noise ratio (SNR) and a relatively stronger response to light stim-
ulus, indicating the stretchable neural electrode array can monitor
steady-state visual evoked potential more efficiently. Since the
direct contact brings concern of electrical safety and may be easy to
cause irritation and allergic reaction, Lin group further developed
an implantable capacitive electrode array with ultrathin dielectric

https://doi.org/10.1016/j.jmat.2019.12.005
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layer of the capacitive BaTiOs3/PI electrode array for electro- in neural signal acquisition.
corticography signal recording (Fig. 7f) [114]. The monitoring re-
sults indicated that the signal quality of the as-prepared capacitive
BaTiO3/PI electrode arrays was comparable to the signal quality of
conventional screw electrodes and resistive electrode arrays. Thus,
this work broadens the scope of application of capacitive electrodes

3.2. Biochemical biosensors

Secreted human fluids, such as blood, sweat, tear, saliva and
gastric fluid, can convey useful bio-information for health
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assessment. Hence, diagnostics based on body fluids can be an
effective noninvasive monitoring method to provide insights into
the health of a human [73,90]. However, despite its advantages,
body fluids diagnostics has been limited to laboratory or hospital
settings. A conventional electrochemical analyzing system is
cumbersome as it typically comprises a working electrode, a
reference electrode, a counter electrode and a reaction cell. Wear-
able applications cannot utilize conventional instruments which
are bulky and rigid. Given this, the challenge of a wearable
biochemical sensor is to achieve single step reaction analysis,
instead of employing tedious procedures as commonly used in
conventional sensing. For a wearable patch sensor, a stack-up layer
by layer method is generally used to incorporate the sensing ele-
ments to realize multiple reactions in a single step [91,92]. Recently,
a flexible organic reflectance oximeter array composed of organic
light-emitting diodes and organic photodiodes was demonstrated
to expand the usability and convenience of determining oxygen
saturation in blood (Fig. 8a) [115], which senses reflected light from
tissue to determine the oxygen saturation. The flexible reflection
oximeter array with 2D spatial mapping capability monitored ox-
ygen saturation on the forehead and with a mean error of 1.1%,
which will aid in medical sensing applications such as 2D mapping
of oxygenation in tissues, skin grafts, wounds, and transplanted
organs. Moreover, a sweat sensor was fabricated with a stretchable
microfluidic system and colorimetric sensor can provide noninva-
sive means for tracking physiologically relevant electrolytes, me-
tabolites, and small molecules (Fig. 8b) [73,92]. The microfluidic
sweat sensor serves as the foundations for light-weight, miniatur-
ized, soft, battery-free, skin-interfaced technologies that combine
biofuel cell sensors, colorimetric assays, NFC electronics, and soft
microfluidics for simultaneous detection of lactate, glucose, chlo-
ride, pH, and sweat rate/loss, and then the collected information are
sent wirelessly directly to the users. Long-term studies and corre-
lation of data acquired by glucose and lactate sweat sensors with
blood levels demonstrate the potential for noninvasive tracking of
blood analyte concentrations.

Smart contact lens are capable of monitoring the physiological
information of the eye and tear fluid, which could provide real-
time, noninvasive medical diagnostics [50]. Recently, a soft, smart
contact lens in which glucose sensors, wireless power transfer
circuits, and display pixels to visualize sensing real-time signals are
fully integrated using transparent and stretchable nanostructures
(Fig. 8c) [116]. The integrated biosensors can operate reliably during
mechanical deformations and monitor glucose levels in tears to
indicate the diabetic condition in real time through a display with
wireless operations. What's more, a graphene-based wireless
sensor was integrated onto a tooth for remote monitoring of
respiration and bacteria detection in saliva (Fig. 8d) [117]. The
graphene/electrode/silk hybrid structure is transferred to bio-
materials such as tooth enamel or tissue, and the biosensor is
capable of extremely sensitive chemical and biological sensing,
with detection limits down to a single bacterium and remote
monitoring of pathogenic bacteria. In addition, recent studies re-
ported an energy-harvesting galvanic cell (Mg—Cu system) for
temperature sensing and wireless communication in a porcine
model. The device delivered an average power of 0.23 yW mm 2 of
electrode area for an average of 6.1 days of temperature measure-
ments in the gastrointestinal tract of pigs (Fig. 8e) [118]. This
power-harvesting cell could provide power to the next generation
of ingestible electronic devices for prolonged periods of time inside
the gastrointestinal tract. Overall, biochemical sensors have revo-
lutionized the standard of care for a variety of health conditions.
Extending the ability and safety of these sensors could enable broad
deployment of prolonged-monitoring systems for patients.

3.3. Problems faced by biosensors

Although flexible biosensors have achieved a great break-
through compared to traditional rigid sensors, there are many
challenges and some main problems need to be solved. The first
challenge is how to calibrate the signal and accurately characterize
the physiological information of the human body in different en-
vironments within the normal working range [8,92,118]. Second,
how to ensure stable operation of the biosensors under harsh
conditions requiring urgent solutions, since applying laboratory
devices to complex or even harsh environments faces many limits,
such as higher sensitivity requirements during exercise and device
failure at high or low temperature [73,92]. Finally, the biggest
challenge is how to integrate multiple biosensors (physical and
chemical biosensors) to facilitate the convenient and comprehen-
sive monitoring of physiological conditions. To solve these prob-
lems, more suitable functional materials and advanced
manufacturing technologies are required to build.

4. Disease treatment

The surgery and medication are common approaches for dis-
eases treatment. However, several rounds of surgery are associated
with high cost, discomfortness and time commitment. In addition,
oral or injectable drugs induce severe side effects and do not have
targeted therapeutic effects [119,120]. Therefore, non-invasive,
non-pharmacological, cost-effective, and convenient approaches
are always desired for disease treatment. As an alternative of sur-
gery and taking medication, targeted pharmacological therapy and
non-pharmacological therapy provided by flexible bioelectronics
are inevitable development trend for disease treatment.

4.1. Pharmacological therapy

A skin adhesive patch is the most fundamental and widely used
medical device for diverse health-care purposes. Conventional skin
adhesive patches have been mainly utilized for routine medical
purposes such as wound management, fixation of medical devices,
and simple drug release [121]. Currently, with recent advances in
nanofabrication, nanomaterials, and flexible electronics, the skin
adhesive patch has evolved into a smart multifunctional device by
incorporating core functions of bulk medical instruments within a
thin flexible adhesive patch [122,123]. This part focus on drug de-
livery for ubiquitous personalized health care and development of
the medical drug-delivery devices.

Gu and co-workers reported a novel glucose-responsive insulin
delivery device using a painless microneedle-array patchcontaining
glucose responsive vesicles with insulin and glucose oxidase
enzyme (Fig. 9a) [124]. The matrix can undergo structural trans-
formations (shrink, swell, dissociate) regulated by glucose con-
centration changes, leading to glucose-stimulated insulin release.
This synthetic glucose-responsive device, using a hypoxia trigger
for regulation of insulin release, builds a “closed-loop” insulin de-
livery system, which provides a desirable way of regulating glyce-
mia with potential improvements in glycemia as well as quality of
life and health in diabetics. To improve the efficiency, Wang group
recently developed a biomechanical-energy-powered TENG-driven
electroporation system to deliver intracellular drug effectively
(Fig. 9b) [125]. This device promotes the increase of plasma
membrane potential and membrane permeability to deliver exog-
enous materials into different types of cells with delivery efficiency
up to 90% and cell viability over 94%, and this high-efficiency
electroporation drug delivery system has great potential for
future disease treatment.

To further expand the application of drug delivery, Li and co-
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workers reported a nanogenerator-controlled drug delivery system
(DDS) for cancer therapy (Fig. 9c) [ 126]. Doxorubicin-(DOX-) loaded
red blood cells (RBCs) are employed as the anti-tumor DDS and the
TENG output, up to 70 V after implantation, can remarkably in-
crease DOX release. The EF withdrawal can stop the increased
release, resulting in a controllable release pattern. The distin-
guished therapeutic effect is highly promising to be applied in the
clinic. In addition, Lee group reported a flexible drug delivery
microdevice (f-DDM) for controlled administration on the curved
organ surface (Fig. 9d) [127]. The f-DDM consists of freestanding
gold membranes over the multireservoir array and the electro-
chemically soluble gold sealing can precisely regulate the drug
release. The localized treatment would minimize the side effects of
the drug with lower dosage and this system would contribute to the
development of precision medicine. Although the effective treat-
ment can be obtained by drug delivery system, the side effects of
the drugs can not be ignored.

4.2. Non-pharmacological therapy

Currently, several promising non-pharmacological treatments
including current stimulation, laser and thermal treatments have
been developed and are gradually applied in clinic for disease
treatment [128—130], such as cardiac pacing, nerves stimulation,
cell proliferation and tissue engineering.

Neuromodulation of current stimulation is a non-destructive
and reversible therapeutic strategy, which can manipulate influ-
encing neurophysiological signals or body functions by stimulating
through the neural networks to achieve therapeutic purpose.
Rogers’ group reported a wireless bioresorbable electronic system
for neuroregenerative therapy (Fig. 10a) [37], which is driven by
radio frequency harvesting power. All components of the device are
degradable materials, including Mg, poly lactic-co-glycolic acid and
silicon dioxide. This work demonstrated that electrical stimulation
of injured nerve tissue proximal to the site of repair can enhance
and accelerate functional recovery. In order to get rid of external
power restrictions, Wang group reported an implanted vagus nerve
stimulation system that is battery-free and spontaneously
responsive to stomach movement (Fig. 10b) [29]. The VNS device

was attached to the stomach wall of rats and could generate
biphasic electric pulses in responsive to the peristalsis of stomach.
The electrodes were directly connected to the vagus nerve to
reduce food intake and achieve weight control. In particular, the
device can work stability and exhibit excellent biocompatibility
without any signs of side effects from the whole blood and chemical
analysis. This self-responsive and real-time peripheral neuro-
modulation mechanism may be more effective for achieving ther-
apeutic purpose. As another example of nerve stimulation, Fabien
and co-workers developed targeted epidural electrical stimulation
neurotechnologies, which enabled restored voluntary control of
walking in individuals who had sustained a spinal cord injury
(Fig. 10c) [130]. This work indicated that neurotechnologies can
provide the usability features to support rehabilitation in clinical
settings and use in the community.

Electric field can induce a non-invasive biological effect named
electrotrichogenesis (ETG). Alternating electric field in the range of
0.1-10 V/cm and frequencies of <15 Hz are commonly used, which
imposes negligible tissue damage. ETG could enhance the influx of
calcium ions into the dermal papilla cells via voltage-gated trans-
membrane ion channels, facilitate adenosine triphosphate (ATP)
synthesis in mitochondria, activate protein kinases, and stimulate
protein synthesis and cell division. For example, Wang group
developed an efficient electrical bandage for accelerated skin
wound healing (Fig. 10d) [131]. The device can generate a discrete
AC electric field directly by converting the kinetic energy generated
from a rat breathing. The therapeutic effects for wound healing
were attributed to the electric field which promoted fibroblast
migration, proliferation, and transdifferentiation. The results bring
an effective therapeutic strategy to chronic disease treatment. To
further apply the electric field in tissue repair and regeneration,
Wang’s group developed a universal motion-activated omnidirec-
tional m-ESD for accelerated hair regeneration on SD rats and nude
mice via random body motions (Fig. 10e) [132]. After the device was
applied, higher hair follicle density and longer hair shaft length
were observed on Sprague—Dawley rats. Particularly, this device
can alleviate hair keratin disorder, increase the number of hair
follicles, and promote hair regeneration on genetically defective
nude mice, which is attributed the increasing secretion of vascular
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for hair regeneration [132]. (f) An implanted system for osteoblasts’ proliferation and differentiation [133].

endothelial growth factor and keratinocyte growth factor. This
work revealed physiologically appropriate alternating electric field
plays a key role in the field of regenerative tissue engineering.
Similarly, Li and co-workers proposed a flexible and implantable
electrical stimulator, which consisting of a TENG and an interdigi-
tated electrode (Fig. 10f) [133]. The results showed that this stim-
ulator significantly promoted osteoblasts’ attachment, proliferation
and differentiation, and promoted intracellular Ca®* secretion. This
work provided a promising way for clinical therapy of bone fracture
and bone remodeling after bone transplantation. Due to the non-
invasive nature, powerful diagnosis capabilities and good curative
effect, more and more patients will rely on implantable medical
electronic devices, which show great potential application in the
future.

5. Conclusion and outlook

This review summarizes advanced integration strategies of
flexible bioelectronics, including novel materials, sensing modal-
ities, stretchable circuits and power sources, highlighting the recent
progress of flexible electronics in the field of physiological signals
sensing and disease treatment. These developments establish solid
foundations for new classes of multifunctional flexible bio-
electronics, which will promote further integration of human body
with devices and accelerate the construction of powerful and
intelligent healthcare platforms.

Despite the achieved progress in this field are encouraging,
considerable challenges still remain. Flexible and hybrid integrated
sensor arrays, including physical and biochemical sensors, are

required for simultaneous multiplexed in situ signals analysis.
Given the complexity of physiological signals, on-site signal pro-
cessing circuitry and sensor calibration mechanisms for accurate
analysis are in ever-increasing demand to ensure the accuracy of
measurements. In addition, function-autonomous bioelectronics
with intelligent health database and powerful functions are ex-
pected to proactively implement health maintenance from physi-
ological signal detection, disease prediction, disease diagnosis to
disease treatment. It is foreseeable that with the advent of the era
of flexible bioelectronics and artificial intelligence, intelligent
flexible bioelectronics will become a critical player in next-
generation electronics.
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