
A Novel Local Search Integer-Programming-Based Heuristic for

PCB Assembly on Collect-and-Place Machines

Anupam Seth�, Diego Klabjan*, Placid M. Ferreira�
� Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

* Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL

April 4, 2011

Abstract: This paper presents the development of a novel vehicle-routing-based algorithm for optimizing
component pick-up and placement on a collect-and-place type machine in printed circuit board manufactur-
ing. We present a two-phase heuristic that produces solutions of remarkable quality with respect to other
known approaches in a reasonable amount of computational time. In the first phase, a construction procedure
is used combining greedy aspects and solutions to subproblems modeled as a generalized traveling salesman
problem and quadratic assignment problem. In the second phase, this initial solution is refined through
an iterative framework requiring an integer programming step. A detailed description of the heuristic is
provided and extensive computational results are presented.

Keywords: heuristic, local search, integer programming, printed circuit board, vehicle-routing, gener-
alized TSP

1 Introduction

Many manufacturing enterprises in today’s world are under severe economic pressure to find ways to sat-
isfy increasingly demanding customers who are seeking higher and higher levels of performance on the two
conflicting dimensions of cost and time to delivery. These pressures are mounting for organizations whose
production processes require expensive, complex automation, and with a broad assortment of products.
Manufacturers operating in such conditions must find ways of planning their production, which simulta-
neously enable both high resource utilization and a quick response to changing demands both in terms of
short-term product mix variations and longer-term product range changes as new products are introduced
and old products become obsolete.

The electronics industry continues to rank as a very valuable and key industry in this information age
at the turn of the century and beyond. Also, most electronic products manufactured today contain printed
circuit boards (PCBs) as critical elements [12]. Therefore, PCB manufacturing plays a very important role
in today’s economy. Global revenues for the PCB industry exceeded $50 billion in 2007 and are expected to
reach more than $76 billion in 2012 [35].

PCBs are manufactured in automated assembly lines, where high-speed placement machines place com-
ponents on the boards. A line can assemble components on multiple types of PCBs and has one or several
high speed machines to perform the actual placement of operations [36]. The assembly of PCBs is a complex
task involving the placement of hundreds (even up to a few thousand) of electronic components in different
shapes and sizes at specific locations on a board.

Because electronics technology can quickly become obsolete, minimizing the time of PCB design and
manufacture is crucial and an increasingly significant concern for electronics firms [21]. In order to remain
competitive in the PCB market, manufacturers must concentrate their efforts on improving the efficiency
of their (now dominantly SMT, or surface-mount technology, as opposed to the older dominantly THT, or
through-hole technology) assembly lines. Production planning and control, process planning, and quality
control are important activities for achieving this efficiency in the PCB industry. Of these activities, process

1

planning is particularly important due to its direct impact on efficient and responsive PCB assembly oper-
ations. With the increasing market pressures, it has become imperative for industries to critically look at
novel ways to reduce assembly time, which is one of the largest chunks in the makespan of PCBs, almost to
the tune of as much as 40-60%.

A critical process in electronic manufacturing is the placement of electronic components onto the PCBs
using high-precision automated machinery [23]. Not only are these machines frequent bottlenecks in the
production, but they are also expensive resources (a typical SMT equipment ranges in price from $250,000
to $1,000,000 [12]). Utilization of these expensive assembly machines is, therefore, an important issue
in PCB assembly [47], especially for industrial applications. Modern PCB production, therefore, utilizes
computerized machines and highly automated equipment. Efficiency relies on technical capabilities of the
placement machines and the underlying workflow. Since further improvements in hardware are both limited
and expensive, to improve the performance of the chip placers, operations on these machines need to be
scheduled as effectively as possible. Also, as equipment becomes more productive, flexible, and automated
(and also more expensive), efficient planning and organization are required to increase production throughput
close to the capacity of the equipment [32].

Today, PCB assembly is carried out by three major types of automated placement equipment, namely, the
chip shooter or turret-type placement machines (illustrated in Figure 1), the pick-and-place-type machines
with a single or multiple heads, and the newer rotary collect-and-place-type machines (CAPMs).

Chip shooters have been around for decades and were known for their (once-upon-a-time) high speed.
They have low flexibility in terms of handling varieties of components, but were very good at repetetive
tasks. They are now almost phased out. Pick-and-place machines are typically slower and, being highly
flexible, are used more for placing odd and specialized components. They may have either a single spindle
or multiple spindles (see Figures 2 and 3).

CAPMs (shown in Figure 4) are being increasingly used for meeting the high-volume, high-flexibility
production requirements of today. They are becoming increasingly popular in use in industry in the last
few years. Research literature is abundant for the chip shooter machines, and also to some degree for the
pick-and-place machines, but happens to be extremely limited and scant for the CAPM configuration, inspite
of their increasing popularity. Solutions to planning problems arising from the mechanisms involved in such
an equipment are provided so far by crude heuristics both in published literature and in shop floor practices.
It is noteworthy that this is inspite of the fact that the CAPMs form the bottleneck in high-volume PCB
production. Being an extremely versatile equipment often used for high- or very-high-volume production,
they are a key resource whose utilization plays a critical role for success as even marginal savings in time
can translate to substantial monetary savings.

According to [36], planning problems for these machines are interesting for (at least) two reasons. First,
the competitiveness of individual companies in the field directly depends on the cost efficiency of the produc-
tion, which in turn depends on the throughput of individual assembly lines. Second, the problems themselves
are quite challenging due to their inherent difficulty and the fact that they offer the possibility of using several
different approaches for formulation and solution.

The placement sequencing problem is a complex scheduling problem with scenario-specific constraints
that can blow up in size and complexity for even relatively small cases. Current methodologies are not only
limited in terms of the quality of solutions they provide, but also in the size of problems that they can
tackle. This is important industry-wide, because not only there are industries (e.g. avionics) that use such
large-sized boards (24 in. x 20 in. boards with several hundreds of components), but also because most
manufacturers of small, tiny boards (e.g. in the cellular phone industry) tend to produce their boards by
batching or “bundling up” several (tens of) their boards together onto a platter that is later cut out into
individual boards. This is to form a virtual large board for the sake of efficient processing.

The CAPM, specifically, offers some very interesting problems and opportunities for application of vehicle
routing techniques and algorithms that we uniquely exploit. This cross-domain application has not been
explored before. We look at modeling, characterizing, and planning for this machine, which offers enormous
automation flexibility due to its modern and highly advanced construction, yet being so, providing greater
challenges for efficient planning, routing and scheduling than ever before. In a certain sense, it is like “taming
the monster” because even though the machine has been created with ultra-flexible automation capabilities,
it is almost impossible to plan for efficient utilization of those capabilities with even the best of modern day
optimization, planning tools, and common computational resources available to the industrial users. These

2

factors motivated us to study and present a practical and efficient methodology to tackle optimization of the
placement sequence plan for a CAPM.

Figure 1: The chip shooter machine Figure 2: The single-spindle pick-and-place machine

Figure 3: The multiple-spindle pick-and-place machine Figure 4: The collect-and-place machine

1.1 A PCB Primer

A PCB is a flat board that carries chips and various other electronic components. The board is made
up of alternating layers of copper and plastic, with the etching process performed on the copper layers to
provide interconnects. These boards are capable of holding several components depending on the required
specifications and produce complex interconnections that are of different sizes and varying densities.

Typical end consumers are the computer, communications, automotive, consumer electronics, aerospace
and defence industries. In the computer industry, for example, PCBs are used in flat panel displays, ink-jet
printers and disc drives. Other applications are RFID systems, engine controls in automobiles and any hand
held devices such as personal digital assistants, mobile phones or GPSs.

The injection of boards with chips is executed by placement machines. In addition to a high placement
rate and flexibility in terms of handling odd components, high placement accuracy is required of these
machines. The principal task of a placement machine is to pick a component from the feeder magazine/tray
and place it on the right location on the board. Thereby placement machines can be classified into two
groups, namely the pick-and-place and CAPMs; and the turret-styled placement machines. The difference

3

between these two is due to the moving parts. Pick-and-place or CAPMs have a moving head while the
circuit board is fixed, and the feeder may move linearly or is fixed. In contrast, a chip shooter machine
operates with a rotating turret, which connects through its cruising radius the feeder with the table. Both,
the feeder and the table, are moving, too.

The elementary machine is a pick-and-place machine with one head equipped with a single spindle. In
every sequence a chip is picked up by the spindle from a feeder tray with multiple slots (each holding a
specific type of chip/component), is transported to the board and placed on its intended location (see Figure
5). Nowadays, the head typically has multiple spindles used to pick-up and place the components. These
spindles are loaded with vacuum-suction operated nozzles capable of holding a single component at a time
(see Figure 8). Furthermore, because of the wide range of capabilities of these machines, it makes sense to
build an assembly line in which machines complement each other.

Despite such overall complexity, it is still instructive to study the single-board single-machine scenario,
as it is done here, since it provides an insight into a subproblem that is at the core of the planning hierarchy
(classified into seven sub-problems by Crama et. al. [10]). The single-board single-machine problem in itself
involves several factors, which play into the computation and optimization of the process plan, namely:

� robot motion control,

� assembly placement sequence,

� feeder magazine arrangement,

� nozzle set-up and inter-changeability.

Figure 5: The basic robot assembly system [41]
Figure 6: A schematic of the collect-and-place machine
[19]

1.2 Contributions and Scope

The main goal of this study is to develop an algorithm to solve the placement sequence planning problem
for the CAPM automated placement equipment. The objective was to develop an algorithm that:

1. uses an underlying model that overcomes some of the limiting and rigid modeling assumptions made in
most previous studies (for example, assuming that each component type is carried in a separate tour,
fixed feeders, forced return to a fixed “park” location between tours, and single-stepped uni-directional
head rotations),

2. is capable of computationally handling the problems arising in the cases of large-scale instances of
boards occurring often in industry,

4

Figure 7: The Siemens’ HS machine dual gantry quad-
head configuration [39]

Figure 8: Detailed view of a rotary collect-and-place
head [39]

3. uses sophisticated modeling and computational techniques rather than simplistic and approximate
ones,

4. is robust to variations in input parameters and operating conditions such as board designs, machine
parameters, set-ups, etc.,

5. and, presents an opportunity for a minimal-effort extension/transition to other machine configurations
and operating conditions.

In this paper, we present:

� a mathematical model of the underlying planning problem,

� an underlying framework of a two-phase algorithm,

� a novel vehicle-routing-based solution methodology and its application in the design of our algorithm,

� detailed steps of the execution and flow of our algorithm,

� a successful column generation strategy to manage the enormous number of columns in the model (it
is applied in each iteration of the algorithm), and

� a description of the successful implementation, testing, and presentation of computational results.

We limit the problem scope to studying a single-head single board scenario while there now exist machines
that can synchronize up to four placement heads (see Figure 8) simultaneously operating on two boards (for
example, the Siemens’ SIPLACE HS - see Figure 7 or Universal Instruments’ Quadris S). If several boards
or heads are present, the problem can be decomposed, albeit losing optimality, into several single head single
board cases.

We study the problem of optimizing the placement sequence of components in a CAPM (see Figures 6,
7, and 8). We allow and exploit more automation flexibility than has ever been explored earlier. We allow
interleaving of pick-ups and placements and multi-stepped bidirectional head rotation (this means that we
do not have to follow the sequential ordering of spindles to use in successive placements, but can use spindle
sequences such as {1, 3, 5, 2, 8, ...} consecutively in a given route in order to optimize the linear distances
to be traveled by the rotary head, see Figure 8 for an illustration of the head loaded with components on
multiple spindles). It allows us to get a solution that truly utilizes the flexibility provided by the system
design. More importantly, we also incorporate the effects of allowing the entire feeder magazine to move
along the horizontal direction. This allows for greater efficiencies to be achieved, but also causes the problem
to become much more complicated. This is the first time this aspect is ever included in the analysis of a
modern SMT placer such as a CAPM.

5

Given these assumptions and specific constraints posed by the scoped configuration of the machine, the
placement sequencing problem becomes very similar to a complex, yet striking version of the vehicle routing
problem with a single capacitated vehicle (in our case, the rotational robotic head with multiple spindles
loaded onto a dual XY gantry) performing multiple trips from the depot (in our case, the feeder magazine)
to satisfy customer demand (in our case, the design requirements for the board being populated, stipulating
the specific component type to be inserted at each placement location, see Figure 6).

We tackle this challenging problem by a two phase optimization approach. In the first phase we construct
a feasible solution by using greedy principles combined with mathematical programming. In [38], we even
provide a worst-case analysis of a single component-type variant.

In the second phase we iteratively improve this solution. In each iteration, we first randomly extract
board locations and the corresponding feeder actions, then we solve an integer program (IP) that finds
optimal re-insertion points, and finally based on this solution the extracted objects are inserted back to get
a new (possibly lower quality) solution. Due to the large number of columns in the insertion IP, it is solved
by price-and-branch.

The main contributions of this work are:

� a model for CAPM capturing feeder motion, bi-directiional and multi-stepped head rotations, and
partially loaded heads (interleaving of pick-up and delivery points) allowing optimization as never
achieved before up until now,

� a VRP-like local search and mathematical programming heuristic for solving the underlying model,
and

� the price-and-branch component of the algorithm.

The solution of this problem holds great promise not only for board assemblers and end-product man-
ufacturers of electronic equipment in reducing cycle assembly time but also is of great value to assembly
machine and equipment manufacturers in answering design questions such as:

� Should feeder movement capability be added or should the head index time be reduced?

� Should head capacity be increased or should the XY traverse speed be increased?

� Is it more helpful to have a smaller, faster head vs. a larger, slower head?

One of the interesting features of this problem is the ripe opportunity for extending and expanding the
problem scope to make the models and heuristics more and more applicable to real-world scenarios. For
instance, going from one to a dual head configuration would introduce problems of load balancing, cycle
sequence synchronization, and the geometrically challenging problem of collision avoidance.

In Section 2, we survey related work both from the PCB and VRP side. Section 3 formalizes the problem
statement and presents the network formulation underlying our solution methodology, which is presented
in detail in Section 4. Section 5 provides detailed computational results in terms of quality, sensitivity, and
scalability of the designed algorithm, and presents a regression model to estimate the performance.

2 Literature Review

Given that the problem of picking components from the feeder and placing them onto the board resembles
the vehicle routing problem, we first examine some very well-known variants of the VRP and position our
work in the context of VRP.

While the problem is essentially similar in nature to the vehicle routing problem, there are a number of
interesting differences and anomalies that qualify it to be studied exhaustively in its own right. First of all,
the specific construction and operating characteristics of these machines based on the principles of exploiting
simultaneous motion along multiple axes call for the formulation and use of the Chebychev distance metric,
i.e. the l∞ norm. This is not common in the vehicle routing literature and many routing algorithms exploit
the much more commonly assumed and used Euclidean distance metric. Another difference is that there is a
sequencing cost to loading and unloading the vehicle. While some of the vehicle routing literature raises and

6

addresses these concerns, particularly in the context of trucks used both for back-hauling or mixed pick-up
and delivery situations, and refrigerated product delivery, it is modeled with additional constraints rather
than with a step cost function as is the case with our machine configuration and model. The problem is
also interesting because it is a multi-depot problem, but differs in that the depots can ‘service’ only select
customers.

The problem also incorportates the multi-commodity aspect into the VRP setting, which is not very
common in published VRP literature. It also simultaneously includes the multiple moving depots aspect.
There are multiple possible pick-up and delivery sites for each component that is placed by the head and
there can be several feeder slots storing the same component type. There also can be multiple locations on
the board requiring the same component type. Our problem also uses multiple routes of a single vehicle, an
aspect not prominent in existing literature (most existing VRP research deals with the single-vehicle, single
route problem or the multiple-vehicle, multiple route problem). The problem also features the presence
of very interesting “free zones,” which offer further opportunity for exploiting simultaneous motion and
influence the optimal routing. “Free zones” are caused by the minimum rotational indexing time of the
placement head causing idle time for the machine over short XY motion spans while picking and placing
components. Thus, one could profitably place a farther-off component taking advantage of the idle time to
reduce the bottleneck operation time someplace else.

To summarize, the problem turns out to be more involved, complicated, and constrained than the indi-
vidual standard capacitated vehicle routing problems such as the capacitated VRP, the VRP with backhauls,
the multi-depot VRP, the VRP with pick-up and delivery, and the dial-a-ride-problem. For further details,
the reader is referred to two comprehensive collections of papers on the VRP and its variants by Toth and
Vigo [43] and Golden et. al. [18]. Our problem involves a combination of characteristics found in these
variants along with some other oddities not found in any of them. Thus, what is required in the present
context is a superset of several strandard VRP variants.

Recently, Franceschi et. al. [17] carried out some remarkable work on developing an integer-linear
programming (ILP) based refinement heuristic for the distance-constrained VRP, extending the work of
Saranov and Doroshoko [37]. Their algorithm extracts a certain number of nodes from an initial starting
solution, generates large number of new sequences through the extracted nodes, and solves a reallocation
ILP model to decide reinsertion points for them. They use a generic ILP solver and attain excellent results
improving upon best-known objectives from literature for several unsolved VRP instances and solving to
optimality other known difficult instances. We extend their work to the more general and complicated VRP
arising in PCB setting, and also introduce a column generation approach to handle the reinsertion ILP.

Next, we examine literature in the PCB manufacturing planning domain. Excellent surveys on production
planning problems in PCB assembly are given in Crama et. al. [10], Smed et. al. [40] and Ji and Wan
[27]. These reviews establish a framework for the general categorization and classification of an exhaustive
list of production planning problems arising in electronics assembly. They also classify research according
to the problems addressed for different machine configurations. A very recent survey can be found in Ayob
and Kendall [5], wherein the various machine configurations and important optimization algorithms to solve
production problems on them are exhaustively reviewed.

While there is an abundance of literature on the turret-type placement machine (see for example, some
excellent work carried out by Wilhelm et. al. [46], Kumar et. al. [31], and Ellis et. al. [13]) and both
the single-headed (Ho and Ji [24], Ayob and Kendall [4], and Ball and Magazine [6]) and multi-headed
pick-and-place machine configurations (Burke et. al. [8], Ahmadi et. al. [1], and Wilhelm et. al. [44],
[45]), there seems to be a definitive lack of research on the CAPM concept. Part of this might be due
to the fact that this machine configuration is fairly recent, being introduced to the commercial market by
machine manufacturers only a few years ago as opposed to the decades-long history of usage of the other
machine types. The steadily increasing popularity of this machine type led by its unique high-volume, high-
flexibility production capabilities in the present highly competitive environment for electronics assembly
demands rigorous modeling, analysis, and computational studies on the specific problems arising in planning
for production on machines of this configuration.

In relation to the CAPM, Altinkemer et. al. [2], [28] have solved the integrated feeder location and
placement sequencing problem for a single rotary head machine both in the case of a moving and a non-
moving feeder. They solve the integrated problem by decomposing it into 2 sub-problems using Lagrangian
relaxation. They also prove an error guarantee of ϵ given an ϵ-approximation algorithm for capacitated

7

VRP. They assume a single feeder location per component type, linear distances, a separate tour for every
component type, and that the head returns to the original feeder location of the component after each tour.
These assumptions are seriously limiting the capabilities of CAPM. In [28], they solve the same problem, but
allowing multiple feeder locations per component type. They use Lagrangian relaxation and a sub-gradient
optimization procedure to find an optimal solution given an optimal solution to the multi-depot VRP and
prove an ϵ-error guarantee given an ϵ-approximation algorithm for the multi-depot VRP. They, however,
continue to assume that the head returns to the original feeder location of the component after each tour
and linear distances.

Günther et. al. [19] solve the integrated problem of feeder location and placement sequencing using a
3-stage heuristic. The construction heuristic is an adaptation of the Clark & Wright savings heuristic [9] and
is supplemented by the use of local search techniques for solution improvement. They relax the assumption
of a separate tour for each component type and achieve solutions within 2-14% of the kinematically-derived
lower bound. They assume no nozzle constraints or nozzle selection problem, a single feeder location per
component type, and the head fully loaded except possibly in last tour, placement sequence identical to the
pick-up sequence, uni-directional head rotations, and a linear distance function. They extended their work
in [30] by using GAs to solve the same problem. They also suggested ways to extend their algorithm to
dual-gantry systems. However, their assumptions of uni-directional head rotations and a fixed location to
which the head always returns to park between tours remain intact.

Ho et. al. [25] have also developed two hybrid GAs to solve the feeder assignment and placement
sequencing problems on the CAPM. Their approach also suffers from the limitations of allowing only uni-
directional head rotations and fully-loaded tours.

In general, GAs suffer from the curse of dimensionality and can handle only small cases when applied to
problems of this kind [30]. Kulak et. al. in [30] make attempts to remedy this, but can still handle only
boards of medium complexity and size.

Tirpak et. al. [42] describe the development of an optimization software for the Fuji NP-132, a dual-
station, dual revolver head, high-speed placement machine. They discuss feeder, nozzle, and placement
optimization problems in terms of machine’s degrees of freedom and physical constraints. As a solution
methodology, adaptive simulated annealing is proposed using cheapest insertion and nearest neighbor path
construction heuristics to generate placement sequences, and constraint satisfaction swapping heuristics for
generating feeder and nozzle setups. They obtain 6% improvements over “manually optimized schedules
by factory engineers”. The paper does not provide details of the mathematical model and the implemented
algorithm.

Knuutila et. al. [29] formalize only a small subproblem of the scheduling problem of multi-headed SMT
machines, i.e., the selection of nozzles, which pick up and place components on PCBs. They aim to minimize
the number of component pickups. Given a sequence of component placement commands, they show that a
greedy nozzle usage policy can be optimal both in the case when the nozzles are universal, i.e., they can pick
up any component, and in the case when only certain component types can be picked up only with certain
nozzle types.

Li et. al. [34] formulate and solve only the feeder assignment problem for the CAPM. They further make
rather simplistic assumptions for the motion of the head. They use GAs to solve the feeder optimization
problem and show that their algorithm performs better than the “conventional industry algorithm”.

Gyorfi et. al. [20] show that the GA by Leu et al. [33] for planning component placement sequences
and feeder assignments for pick-and-place PCB assembly tasks is a special case of a more general model
that supports multiple-placement nozzles and independent feeder and board link (chromosome) evaluation
methods. They also show that independent link evaluation can be used to offset a reduction in the parent
link sample space and that these results are better than what can be achieved through link-pair evaluation.
These generalizations extend the capabilities of the GA to a broader range of manufacturing scenarios, but
do not explicitly address specific concerns in the CAPM scenario.

Thus, it is clear that even in the few scant papers that have been published on the CAPM configuration,
none of them addresses or studies the problem with as much rigor, or in as general of a form, or using
sophisticated mathematical and computational techniques as we do.

8

3 Problem Statement and Modeling

This section outlines the formal statement of the exact problem. We have developed a network model to
represent and solve the problem under consideration.

In this work, we optimize the placement sequence of components for a CAPM. We assume that the
arrangement of the feeder is prescribed in a separate pre-optimization step. This is not an unreasonable
assumption even though the optimal sequence is dependent on the feeder arrangement as an input since it is
possible to arrive at an arrangement by iteratively solving the placement sequencing and feeder arrangement
problems within a feedback loop. This has often been done in the literature for these kinds of problems.

We assume for the sake of simplicity that the feeder rack holds each component type in only one slot
location. Thus, the component retrieval problem disappears. We also assume for the sake of simplicity that
the acceleration and velocity profiles of the robotic head and feeder magazine remain independent of the
components that they carry. These assumptions can be easily relaxed.

3.1 Formal Statement

We aim to find the least cost sequence of component pick-ups from the feeder magazine and then placement
on the board subject to the following conditions:

(1) all components required by the design must be placed,

(2) every component that is placed must have been picked up previously (and not yet placed),

(3) every spindle may contain only one component during a “route”, and

(4) at no time in a route must the capacity of the head be violated.

We want to fully exploit opportunities offered by simultaneous motion, spindle jumping (a phenomenon
caused by allowing bidirectional and multi-stepped indexing motion of the placement head), and feeder
magazine movement. This can be restated in a more generic VRP-like terminology.

We assume

� there are n customers (i.e. board locations in our case),

� each requiring items of different types, i.e., each customer has a demand for a single item of a specific
type,

� there are m depots (i.e. feeder slots in our case) to pick up the items from, each depot storing only
one type of an item, implying that travel among depots is required, and

� each depot stocks an infinite supply of the kind of the item.

The objective is to find the least cost sequence of item pick-ups from the depots and delivering them to
the “customers” subject to the following conditions:

� all items required by the customers must be delivered,

� every item delivered must have been picked up previously (and not yet delivered),

� the capacity limit of the vehicle must not be violated, and

� the restrictions and cost implications of the loading and unloading sequence for the vehicle are re-
spected.

9

3.2 Network Model

We formulate a network model G(N ,A), where N is the set of nodes and A the set of arcs in the model, in
order to define the solution methodology.

As supporting definitions, first, we define a board node (BNi) corresponding to each physical board
insertion location and a feeder node (FNi) corresponding to each feeder slot location capable of holding a
number of components of one particular type. From each BNi and FNi, we construct a series of nodes called
the greater board nodes (GBNj) and greater feeder nodes (GFNj) respectively. The board nodes contain
only the physical location and component type information, whereas, the greater board nodes contain a
pointer to the board node and the active spindle position on the head at this node. Similarly, the feeder
nodes contain the slot location and component type information, whereas the greater feeder nodes contain
a pointer to the feeder node, the active spindle position on the head, and the feeder magazine’s current
position at the time of the head’s visit to this node. To define it formally,

BNi = Board Location i with its associated Component Type j

FNi = Slot Location i with its associated Component Type j

GBNi = Set of k nodes for 0 ≤ k ≤ maximum number of spindles

with each node of the form (BNu,Spindle k)

GFNi = Set of kl nodes for 0 ≤ k ≤ maximum number of spindles,

0 ≤ l ≤ maximum number of feeder magazine positions,

with each node of the form (FNv,Spindle k,Feeder Magazine Position l)

GBN = {GBN}i
GFN = {GFN}i

N = GBN ∪GFN

A = N ÖN .

These principles are illustrated in Figure 9. The figure shows an example of the network for a board with
four component types at several locations (8 chosen for illustration). The machine has four spindles, a few
possible feeder magazine positions (7 chosen for illustration), and four feeder slots each holding one of the
four component types. Thus, there are 8 defined BN nodes and 4 defined FN nodes. We can see how each
of the 4 FN nodes is replicated 4 (no. of spindles) x 7 (no. of feeder positions) = 28 times in the GFN
network and each of the 8 BN nodes replicated 4 (no. of spindles) times in the GBN network.

We next focus on arc costs. In PCB manufacturing, cost is driven by time, and thus all arc costs are
measured in time units, i.e., the time to move between two nodes. To this end, let us define:

IndexT ime = Turret/Head rotational index time

SlotWidth = Width of one slot on the feeder

V elocityhx = Head traverse velocity in the X direction

V elocityhy = Head traverse velocity in the Y direction

V elocityf = Feeder magazine movement velocity in X direction

h(a) = Head node of arc a

t(a) = Tail node of arc a

∆SpindlePosa = Smallest relative non-oriented displacement

between active spindle positions at nodes h(a) and t(a)

= min(|Spindle h(a)− Spindle t(a)|,
Max No. Of Spindles− |Spindle h(a)− Spindle t(a)|).

By Spindle k for k ∈ N , we denote the spindle position associated with node k. In defining ∆SpindlePosa,
we capture the number of positions on the head between two spindle indices. We note that to get from one
position to the other one the head can turn either clockwise or in the other direction. For this reason there
are two terms.

10

Figure 9: Extended PCB network model

11

Given the above definitions, we can define the costs on the arcs in the network, where Xi, Yi are the
x-co-ordinate and y-co-ordinate of node i, respectively.

Type (I) arc (t(a) ∈ GBN, h(a) ∈ GBN) :

cb(a) = max(|Xh(a) −Xt(a)|/V elocityhx, |Yh(a) − Yt(a)|/V elocityhy,∆SpindlePosa · IndexT ime)

Type (II) arc (t(a) ∈ GFN, h(a) ∈ GBN) :

cfb(a) = max(|Xh(a) −Xt(a)|/V elocityhx, |Yh(a) − Yt(a)|/V elocityhy,∆SpindlePosa · IndexT ime)

Type (III) arc (t(a) ∈ GBN, h(a) ∈ GFN) :

cbf (a) = max(|Xh(a) −Xt(a)|/V elocityhx, |Yh(a) − Yt(a)|/V elocityhy,∆SpindlePosa · IndexT ime)

Type (IV) arc (t(a) ∈ GFN, h(a) ∈ GFN) :

cf (a) = max(|Xh(a) −Xt(a)|/V elocityhx,

|Feeder position h(a)− Feeder position t(a)| · SlotWidth/V elocityf ,

∆SpindlePosa · IndexT ime)

In type (I), (II), (II) arcs, the first two terms capture the fact that the head can move simultaneously
both horizontally and vertically. The third term captures the time to move the head from one spindle to the
final one. If this time is longer, the head waits at h(a) until it rotates to the desired spindle.

In type (IV) arcs, the feeder moves concurrently with the head. The first and last terms capture the
head operations, while the middle term times the feeder movement.

Using the above stated costs, the triangle inequality holds only for selected arcs, namely:

(GBNi, GBNk) ≤ (GBNi, GBNj) + (GBNj , GBNk)

(GFNi, GFNk) ≤ (GFNi, GFNj) + (GFNj , GFNk)

(GBNi, GFNk) ≤ (GBNi, GFNj) + (GFNj , GFNk)

(GBNi, GFNk) ≤ (GBNi, GBNj) + (GBNj , GFNk)

(GBNi, GBNk) ≤ (GBNi, GFNj) + (GFNj , GBNk).

On the other hand, due to the special structure of the network costs, the triangle inequality does not
hold for arcs:

(GFNi, GFNk) ̸≤ (GFNi, GBNj) + (GBNj , GFNk).

We define a route to be the sequence of all arcs between two feeder nodes where the head touches down
upon its return from the board, i.e. it starts capturing the head’s motion as soon as it hits the feeder,
continuing through its journey delivering components on the board, and up until it returns to the feeder to
pick up the first component for its next tour out. In temrs of the above definitions, a route is a list of arcs
preceded by a type III arc, comprising of several type IV arcs, followed by a type II arc, several type I arcs,
and ending again with a type III arc. A typical route is illustrated in Figure 10.

Let R be the set of arcs contained in route r. Let a1 be an arc in R such that h(a1) ∈ GBN and t(a1) ∈
GFN and a2 be an arc in R such that h(a2) ∈ GFN and t(a2) ∈ GBN . Let also a3 be an arc such that
h(a3) is the ‘last’ GFN node to be visited by r and t(a3) is the first GFN node to be visited by the ‘next’
route (see Figure 10). The cost of route r reads:

C(r) =
∑

a∈R:h(a)∈GFN, t(a)∈GFN

cf (a) + (1)

max

cbf (a1) +

∑
a∈R:h(a)∈GBN, t(a)∈GBN

cb(a) + cfb(a2)

 , cf (a3)

 . (2)

12

Figure 10: Example of a typical ‘route’

13

Let us define

A = cfb(a1) +
∑

a∈R:h(a)∈GBN, t(a)∈GBN

cb(a) + cbf (a2)

B = |Xh(a3) −Xt(a3)|/V elocityhx

C = |Feeder Position h(a3)− Feeder Position t(a3)| · SlotWidth/V elocityf

D = ∆SpindlePosa3 · IndexT ime

E =
∑

a∈R:h(a)∈GFN, t(a)∈GFN

cf (a).

The first part in (2) corresponds to the time it takes the feeder and head during the pick-up operations.
At the end of this step, the head goes on the board and spends A units of time before returning back to the
feeder. During this time, the feeder needs to move along arc a3. At node h(a3), the two meet and have to
be synchronized, which is captured by the maximum operator.

Cost cf (a) by definition does not capture mere feeder movement time and thus we argue that nevertheless
(2) is correct. We have C(r) = E + max(A, cf (a3)). The first term E captures the time to pick up the
components. At node t(a3) the feeder and head decouple; the head moves to the board where it stays for A
units of time before synchronizing with the feeder at node h(a3). By definition, it takes the feeder C units
of time to move along arc a3. As a result the true cost/time of route r is E +max(A,C).

We know that A ≥ B because of the triangle inequality. We also have A ≥ D because along the board
nodes the spindle must rotate at least as many times as along a3. We obtain

E +max(A,C) = E +max(A,B,C,D)

= E +max(A,max(B,C,D))

= E +max(A, cf (a3)),

which matches our definition of C(r).
We have just established that the network model formulated does indeed capture the true cost of the

problem scenario accurately.

4 Solution Methodology

4.1 Overall Approach

The problem as posed in its complete generality is very hard to solve to optimality. This is because of
the nature of the problem itself - it is a combination of multiple NP-hard problems. For example, just the
sequence determination given no flexibility with spindle jumping or feeder magazine motion is a variant of
a VRP, which, by itself, is a hard problem to solve on large data sets.

A pure mathematical programming approach would likely not work due to the reasons described above.
For this reason, we resort to a heuristic. Instead of employing a traditional local search strategy or a pure
meta-heuristic, we combine very large-scale neighborhood search ideas with mathematical programming,
similar in spirit to Franceschi et. al. [17]. To this end, we used a two-phase solution methodology. First, we
designed a complex heuristic that generates a good initial solution that is bounded by a theoretical worst case
performance ratio. The theoretical worst-case analysis is presented in [38]. This solution is then iteratively
improved at each subsequent computational iteration by an interchange algorithm so that we are assured to
find a no worse solution than the one we begin with.

The improvement phase is based on a recent work by Franceschi et. al. [17] wherein they achieve
excellent results using a refinement algorithm following a similar philosophy for the standard VRP. The
idea is to select certain nodes to extract from the starting solution, then extract the nodes, and derive
sequences or short ”strings” of nodes to reinsert into the short-cutted solution, next to formulate an integer
program and solve it using an ILP solver to incorporate the results back into the solution. This process is
repeated until an iteration limit is reached or the solution is of an acceptable quality (see Figure 11 for an
overview of the methodology). This is a very interesting approach because it uses the x-Opt philosophy, but

14

computes intelligently at each re-insertion the best insertion points of a given sequence of nodes using an
integer program that is far more tractable than the original ILP would be. For example, this technique when
applied to the TSP leads to a simple assignment problem that needs to be solved in order to determine the
best ordering for the refinement phase [37].

A special distinction of this approach is that in the extreme case when all nodes are extracted and
all possible sequence combinations of them are reinserted, this heuristic is guaranteed to find the optimal
solution. Thus, there is a very explicit control over the tradeoff between efficiency and quality of the solution.
Furthermore, due to the advantageous nature of this approach, it becomes also possible to compare solutions
generated by the heuristic vs. an optimal solution for small instances.

GENERATE AN INITIAL SOLUTION
using a specially adapted iterated
tour-partitioning-based heuristic

SELECT NODES TO EXTRACT
from the initial solution based on key

strategic options

EXTRACT SELECTED NODES

SHORT-CUT
routes to get (an infeasible) solution

RECOMBINE
extracted nodes to derive short
‘strings’ or subsequences to be

reinserted

FORMULATE ILP
for reinsertion of strings into the

short-cutted solution

REINSERT STRINGS
based on the ILP solution

and update solution

Terminating
condition met?

STOP

SOLVE ILP
to find insertion point-string
combinations that minimize

insertion costs
using column generation when

necessary

Figure 11: An overview of the solution methodology

4.2 Initial Solution Generation Heuristic Design

The initial solution is generated by applying a heuristic designed along the lines of the iterated tour partition-
ing (ITP) heuristic [22]. In order to bring the problem to a tractable stage, we first neglect the computations
on the feeder side and solve the problem on the board side. Taking this solution, the computations on the
feeder side are then carried out in order to get a feasible initial solution. In the process of doing this, we
encounter the generalized traveling salesman problem (GTSP). The GTSP is a well-known NP-hard problem
[16] and is in fact known to be inapproximable within any constant factor [14]. For these reasons, we use the
transformation scheme proposed in [15, 16] to approximately solve the problems, which arise in the course
of our initial solution generation heuristic that resemble the GTSP.

4.2.1 Board Side Computations (BSc)

The standard ITP heuristic works on a TSP tour in order to produce solutions to the capacitated VRP.
In our case, however, we cannot use the TSP as we do not need to traverse every single board node in the
expanded network formulation. Looking carefully at the structure of the network and the desired solution,
we note that we need to visit exactly one out of the set of GBN nodes corresponding to every unique BN
node. We also need to use every spindle at most once in every route (note that the TSP solution in the
capacitated VRP case corresponds to multiple routes as is also the case for us). As a result, we get two
constraints on the generalized shortest cycle problem that makes it resemble a GTSP constrained in two-
dimensions. Figure 12 shows how a solution to the standard GTSP is insufficient in satisfying the feasibility
requirements of the problem under study. Figure 13 illustrates a sample feasible solution. To the best of our

15

knowledge, this 2-D GTSP problem has never been tackled before. We, therefore, devise, a new heuristic to
obtain a solution to this problem.

We first solve the GTSP formed on the board side by neglecting the problem on the feeder side and the
spindle assignments (the 2-D aspect). Instead of using a GTSP solver, we transform the underlying GTSP
problem to a TSP following [15].

The Fischetti-Salazar-Toth (FST) Transformation to the GTSP is an approximate, yet one of the most
efficient algorithms proposed and involves the following steps.

1. First, it requires solving a TSP over a reduced network using approximate edge costs. This reduced
network can be formulated using a variety of reduction measures, the relative efficieny and performance
of which are detailed in [16]. The reduced network has a node for each cluster in GTSP. The cost of
an arc, for example, can be the average cost of arcs going from one cluster to the other. The TSP tour
fixes the order of clusters to be visited.

2. Then we solve a series of shortest path problems to determine the final solution to the GTSP. The
shortest path problems select a particular arc between any two consecutive clusters as imposed by the
order from the previous step.

The clusters in this GTSP correspond to nodes originating from the same physical board node as a result
of the expansions caused by the spindle positions. At this stage, we do not consider the constraint of using a
single spindle in every route. Thus, the solution produced by this step does not necessarily satisfy the single-
use-of-a-spindle constraint. Next, we disregard the spindle assignment suggested by the GTSP solution and
use it only to obtain node sequencing information. Having obtained a tour covering all the requisite nodes
exactly once, we partition this tour into groups, each group having the number of nodes equal to the number
of spindles, i.e. each group representing a ‘route’, similar to the ITP heuristic. The last route might have
less nodes than the number of spindles. For each route group, the problem of assigning the spindles to the
ordered set of GBN nodes one-to-one becomes the standard quadratic assignment problem (QAP), which is
then solved approximately by a greedy strategy.

At the end of the BSc, we have the routing through the GBN nodes completely determined. We address
the remainder of the problem through the feeder side computations.

BN1 BN2 BN3 BN4 BN5 BN6 BN7

Spindle1 y y y y y y y

Spindle2 y y y y y y y

Spindle3 y y y y y y y

Spindle4 y y y y y y y

Spindle5 y y y y y y y

Spindle6 y y y y y y y

Spindle7 y y y y y y y

Figure 12: An example showing how a solution to the standard GTSP is infeasible for the 2-D GTSP

Figure 13: A feasible solution to the 2-D GTSP

16

4.2.2 Feeder Side Computations (FSc)

After solving the BSc, the feeder spindle assignment is implied by the one chosen in the BSc because the
spindle assignments have to be identical on the board and feeder side for feasibility. The problem on the
feeder side is, however, still not quite simple. For each route group formed in the BSc, the decision as to which
feeder positions must be used at the pick-up nodes, as also the sequence of the pick-up nodes themselves,
have yet to be determined. This is again a GTSP because we need to visit exactly one out of the GFNs
arising out of each requisite physical pick-up node, i.e. FN node, while also choosing a feeder magazine
position at which the feeder must be positioned when the head is active at this node. We again make use of
the FST transformation to solve this GTSP formed on the feeder side. The clusters in the GTSP this time,
however, correspond to nodes coming from the same feeder node as a result of the expansions caused by the
feeder magazine positions.

4.3 Improvement Heuristic Design

The improvement phase heuristic is based upon the algorithm proposed by Franceschi et. al. [17] for the
standard VRP. Our adopted algorithm is an iterative scheme that begins with an initial solution and carries
out the following steps.

4.3.1 Selection

In the first step, nodes from the incumbent solution are selected to be marked for extraction. The selection
can be based on multiple schemes, which can be used individually, or in conjunction with each other, to
maximally gain benefits from their individual characteristics at each of the different stages of the progression
of the execution of the algorithm. Each of the schemes has parameters which can be controlled and tuned
to get the best performance of the heuristic.

1. Random-Alternate: In every route, we choose randomly between extracting all even or all odd nodes
(or, in larger examples, every fourth node or every eighth node, etc.).

2. Scattered: We decide, for every node, with a predetermined, fixed probability, whether the node be
extracted or not. This scheme allows for the extraction of node sequences consisting of consecutive
nodes. It is also conceivable to vary the probability of extraction as a function of the number of
iterations passed.

3. Neighborhood: Here we concentrate on a seed node, say v∗, and remove nodes v with a probability
that is inversely proportional to the distance dvv∗ of v from v∗. A score is assigned to each node v∗,
which is proportional to the number of nodes “close” to v∗. This score is used to rank the nodes
in descending order, from which potential nodes to be extracted are selected as seed nodes in each
iteration.

Franceschi et. al. [17] state that schemes random-alternate and scattered appear better suited to improve
early solutions, whereas the neighborhood scheme seems more useful to deal with the later iterations.

4.3.2 Extraction

In this step, we extract out the nodes marked in the selection step. Typically, nodes can be pulled with several
different strategies. We could apply the selection process to both the board and feeder nodes independently or
we could maintain either partial or complete synchronization between the board and feeder nodes, applying
the selection process to one of the sets while deriving the selections from the other set by enforcing (partial
or complete) feasibility conditions on the resultant routes. Pulling out nodes destroys the routes, which
are reconstructed by short-cutting the solution, i.e. creating a new arc between the two nodes neighboring
the extracted nodes. Again, three possible schemes can be considered here, however these schemes are
more global in that, once chosen, they are adhered to throughout the execution of the algorithm. The idea
behind the multiple schemes is the degree of flexibility allowed to the heuristic to destroy feasibility at every
iteration. When we pull out nodes randomly from a feasible solution, we run the inevitable risk of destroying

17

feasibility completely. This can be beneficial if the heuristic is able to take advantage of the opportunity
for finding better solutions by temporarily traversing infeasible space. Based upon these considerations, we
developed three schemes.

1. Asynchronous Between Board and Feeder: Under this scheme we pull out both GBN and GFN
nodes from the incumbent solution independently of each other without considerations of destroying
feasibility of the route. This is the most flexible option likely leading to the most promising results,
yet computationally the most challenging.

2. Synchronous Between Board and Feeder: We maintain complete feasibility while extracting the
nodes. This implies pulling out the corresponding GFN node when a GBN node is pulled out and
vice versa. The correspondence is implied by the underlying component type. This approach is the
most rigid, but the easiest computationally.

3. Partial Asynchronous/Alternate Asynchronous: Considering the above approaches as being
two extremes, this scheme aims to get both speed and flexibility with pulling out only GBN nodes
in an iteration, only GFN nodes in the next iteration, and so forth, thereby maintaining the feasible
structure of the routes on at least one of the board and feeder sides.

4.3.3 Recombination

In this step, we use all the extracted nodes to create a pool of subsequences to be potentially reinserted
into the solution, albeit at a better location than they were at earlier. In order to expand the extent of
the solution space considered, we form all possible combinations of the extracted nodes using the different
spindles on the head and assuming the feeder magazine to be in the different possible positions. Furthermore,
to improve the performance and get better solutions in fewer iterations, we also form short sequences of nodes
by combinatorially choosing nodes using this expanded node set. We have examined the benefits of including
sequences of up to length n, n being a small number (5 in our case). This means that we would have an
enormously large number of possible candidates for reinsertion.

Therefore, we use the idea of dynamically pricing these candidate strings based on the solution of the
ILP described below to develop ‘good’ sequences for each insertion point and to find ‘good’ insertion points
for each sequence. The reason we expand the node set is to allow for additional flexibility and to avoid being
stuck with rigid choices of the current spindle assignment and feeder magazine placement.

4.3.4 Reallocation

In this step, we form an insertion ILP. This ILP reinserts back the extracted nodes. Note that the model is
always feasible since the nodes can always be reinserted back to the original locations. The model is presented
in Appendix A. Essentially, the ILP is an assignment problem, but with many additional constraints. The
complete ILP has a large number of columns. We study the effect of two possible strategies to cope with
this computational complexity.

Using Random Strategy We solve the problem by randomly choosing a predetermined, large number
of columns from the entire set of columns to add to the problem.

Using Column Generation Strategy We use the dual values of the LP relaxation of the formulated ILP
to decide which columns to add to the model. Due to the very large number of total possible columns that
can be added to the problem, column generation is employed [7]. The pricing problem, given in Appendix
B, is the problem of finding a constrained lowest cost cycle (in a network with positive and negative cost
cycles). This is an extremely hard problem to solve and for this reason, we resort to randomly selecting
columns based on the underlying reduced cost. To this end, we first solve the LP relaxation of the model
with a reasonable number of columns. Then, using the reduced costs, we select from a large set of randomly
generated columns those columns that have a negative reduced cost. We add these columns to the model,
solve the LP relaxation, and re-iterate to find more columns based on updated reduced costs.

Once there are no significant improvements in the objective value of the LP relaxation, we revert back
to the ILP formulation with the best columns in terms of their reduced costs, and solve the ILP.

18

4.3.5 Reinsertion

We incorporate the optimal results obtained from the reallocation ILP into the solution using insertion
operations. This re-insertion step marks the end of an iteration, and the entire series of steps is repeated in
the next major iteration.

5 Computational Experiments

Extensive computational experiments were designed and carried out in order to examine, test, and vali-
date the performance of both the initial solution generation heuristic and the improvement heuristic. The
sensitivity of the improvement heuristic was especially tested to its various input and design parameters
such as problem size (measured in three dimensions, namely, the total number of components, the number
of component types or component diversity, and the number of spindles present on the head), the inital
or starting solution provided to the improvement heuristic, the maximum sequence or string length used
for recombination, enabling vs. disabling column generation strategy, introduction of additional columns,
randomization, extraction probability, and selection and extraction strategies. The performance of the over-
all heuristic was compared against an implementation of a well-designed state-of-the-art GA for optimizing
PCB assembly problems using genetic operators suggested in [30]. Results presented and discussed in the
following sections are representative of results obtained on multiple runs of the heuristic over test cases of
varied problem complexity and dimensions.

The experiments were carried out on a cluster of 52 nodes, each having two 64-bit 3.2GHz Pentium 4
Xeon processors sharing 6GB RAM with InfiniBand, running Red Hat Enterprise Linux 4 and compiled
under GCC version 4.1.2. The implementation however, does not currently exploit multiple processors; it is
sequential. We used the Concorde Lin-Kernigan TSP Solver [3] to solve TSPs, an in-house implementation
of a version of Dijkstra’s algorithm [11] to solve shortest path problems, and CPLEX 11.0 MIP solver [26]
as the generic ILP solver. The QAP is solved approximately using a greedy heuristic approach. All times
are reported in minutes.

The first set of test instances were generated using a randomized model for a board with key parameters
such as number of components, component diversity, and number of spindles as inputs. Statistical analysis
of the board designs for a major electronics manufacturer partner over recent years (2007-2008) were used to
determine the ranges of these parameters. Machine parameters such as velocities, on the other hand, were
fixed to those values found most commonly in such configurations. As a reference point, a mid-size instance
with 250 board nodes, 10 spindles, 50 component types, 100 feeder slots, and 150 feeder positions yields a
complete network with 152,500 nodes.

The second set of test instances comprised of three real-world PCBs used by a partner electronics man-
ufacturer (the only modification being the desensitivization of component serial numbers and names, e.g.,
part number 132032545443ART58 was replaced with partxxxx001 in the data files). These PCBs belong to
representative scales of boards typical in the industry. The smallest instance is a board of low complexity
containing 41 components belonging to one of 10 different component types. The second instance is a board
of medium complexity containing 185 components belonging to one of 13 different types. The final instance
is a board of large complexity containing 540 components belonging to one of 61 types.

These instances were run with our proposed solution methodology to rigorously observe the efficacy of
our techniques both against the genetic algorithm implementation and an implementation of ten variations
of “sweep” heuristics that tend to be used by practitioners in industry to estimate good assembly sequences
for such PCBs. The ten variations arise from the fact that such heuristics vary widely in detail in the way in
which they are used from one manufacturer to another. We do not have access to the source code, nor the
exact proprietory algorithms, therefore, we implemented a number of variations along with possible areas of
improvements in consultation with our partner, and in each case, the best one was picked for the purpose of
our comparisons.

19

5.1 Quality of Obtained Solutions

5.1.1 Initial Solution Generation Heuristic

In order to gauge the quality of the initial solution generation heuristic, we note that the generated initial
solution was consistently found to be about 50% better than the best solution obtained by running the
GA for 3 hours starting from a completely random solution pool. The running time of the initial solution
generation algorithm averages 2-10 minutes for a common board instances. As we shall see in the next
section, the quality of the starting solution is critical to the performance of the improvement heuristic.

5.1.2 Improvement Heuristic

Two tests were conducted with the heuristic in order to validate and compare its performance. Firstly, the
heuristic was compared to an implementation of the state-of-the-art GA methodology as suggested in [30]. It
was found that our improvement heuristic clearly outperformed the GA with 25% of its initial population set
to be identical to the solution obtained by using our initial solution generation heuristic, Figure 14. At each
time point, the best member in the GA population was selected for comparison. An average objective value
difference of 25-50% was observed over multiple test cases of varying number of components, component
diversity, and number of spindles, with the gap being larger for more difficult problems. This was found to
be consistent also in the real-world board instances (the second set of test instances).

GA vs. ILP-based refinement heuristic (ILPBRH)

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

CPU time (min.)

%
 O

b
je

c
ti

v
e

 v
a

lu
e

GA

ILPBRH

GA vs. ILP-based refinement heuristic (ILPBRH)

40

50

60

70

80

90

100

0 20 40 60 80 100 120

CPU time (min.)

%
 O

b
je

c
ti

v
e

 v
a

lu
e

GA

ILPBRH

Figure 14: Comparing heuristic performance with the state-of-the-art GA for two widely different board
types

In the second experiment, both our heuristic and the GA were started with a randomized initial solution
instead of a ‘good’ solution as provided by the initial solution generation heuristic. It was again found that
our heuristic was far more effective in improving upon such a random solution. After 300 minutes, the value
obtained by our heuristic was about 50% below the value obtained by the GA heuristic. The real-world
instances were found to perform as well as the randomized examples. It is interesting to note that even
after running our heuristic for several hours, we did not get to the value of the starting solution provided
by the initial solution generation heuristic. This demonstrates that the quality of the starting solution is
extremely important even for the improvement heuristic. Both aspects of our work have their respective
crucial importance in the derivation of a good solution to this extremely complex and challenging problem.

Table 1 specifically shows the power of our proposed technique in comparison to the GA and the afore-
mentioned sweep heuristics on real-world test cases. We can see that the gain improves as the complexity
increases.

We also plot in Figures 15 and 16 the routes in the starting solution and a solution evolved over time
using our heuristic. It is clear that the routes very clearly get ‘sorted out’, i.e. the number of self-crossings
in the routes is dramatically reduced. Going back to the basic TSP/VRP structure underlying the problem,
we observe that minimal self-intersection is an essentially desirable characteristic of a good solution. These
figures are, thus, a further proof of the efficacy of the developed algorithm.

20

Table 1: Real PCB data evaluation
Assembly time

Real-world test case Proposed methodology1 GA1 Sweep heursitic2

Low complexity 98.68 140.35 165.67
Medium complexity 362.95 670.98 1016.45
High complexity 1685.63 2810.64 7613.14

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500
Iteration 1

x

y

Figure 15: Initial solution route visualization

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500
Iteration 300

x
y

Figure 16: Optimized solution route visualization

5.2 Sensitivity of Solution Quality to Parameter Choice

5.2.1 Effect of Variation of Heuristic Design Parameters on Performance

We found the effect of the choice of the maximum string length parameter for reinsertion to have only a
negligible effect on the heuristic’s performance, with lower values of the parameter (specifically sequences
of size 1, and of size at most 2) often performing the best. These results were consistent across boards of
varied sizes and using widely different number of spindles in the head. This can be easily understood, for
it is obvious that the heuristic can do better by letting the ILP find which nodes to neighbor rather than
having to choose them ineffectively out of a set of millions of possible combinations, albeit using many more
iterations to do so. A typical string length of up to a maximum of 3 nodes was used for the sake of the
experiments.

We also recorded from numerous experiments the effect of the extraction probability, or the percentage
of perturbation in the original solution on the performance of the heuristic, see Figure 17. The extraction
probability is defined as the percentage of nodes in the solution that are extracted out in a given iteration.
It is observed that the heuristic performs better in general with lower values of the extraction probability
(up to p = 0.2 typically). This result too is indicative of the power and value of such an algorithm since
using p = 1 is equivalent to solving the entire, original integer problem, which obviously is highly intractable
as has been discussed. We note that even with small perturbations, which lead to smaller ILPs that can be
very easily and quickly solved to optimality, we can obtain very sharp decreases in the value of the objective
function of routing problems. Beyond a certain point, however, too low of an extraction probability value
results in poorer performance, see Figure 18. An optimal strategy is to continuously adapt the extraction
probability with time, starting with lower values and increasing it up to a certain point, or allowing high
spikes in between the continual use of low values. Using higher values causes the ILPs to get increasingly
difficult and time-consuming to solve, and could, therefore, also be used only intermittently to ‘shake out’
the solution. With little computational effort, dramatic improvements can be obtained. This is a desirable
property of any heuristic.

1after equal amounts of significant CPU time: 150 mins, 550 mins, 4000 mins respectively
2not iterative, and hence not compared in terms of CPU time

21

Figure 17: Effect of different extraction probabilities on heuristic performance

Effect of extraction probability

625

725

825

925

1025

1125

1225

1325

1425

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Extraction probability

O
b

je
c
ti

v
e
 v

a
lu

e

40 min.

80 min.

120 min.

Figure 18: Section view of effect of extraction probability on heuristic performance

22

We also investigated the effects of the three different selection strategies on the performance, see Figure
19. In this figure, RA corresponds to the random-alternate strategy, NBD corresponds to the neighborhood
strategy, and SCT corresponds to the scattered extraction strategy. It was found that better performance of
the heuristic is favored by greater randomness in the selection strategy. The scattered strategy performs the
best, while the neighborhood stategy, which has the most ‘intelligent’ structure performs the worst. This
can again be explained by leaving the making of intelligent choices to the heuristic by itself rather than us
using simplistic and ineffective guesses at them.

Effect of selection strategy

300

400

500

600

700

800

900

0 50 100 150 200 250

CPU time (min.)

O
b

je
c

ti
v

e
 v

a
lu

e

RA

NBD

SCT

Figure 19: Effect of different selection strategies on heuristic performance

The effects of three different extraction strategies were also investigated, see Figure 20. It was found that
in the long run, the fully asynchronous (between the board and the feeder) strategy labeled as ‘ASYNC’
performs the best because it gives maximum flexibility to the heuristic to hack its way through the search
space. In the short run, however, imposing some feasibility constraints through the partially synchronous
strategy marked as ‘PASYNC’ on the heuristic’s traversal through the search space can prove to be quite
effective. However, over-constraining the problem by rigorous imposition of feasibility as in the fully syn-
chronous strategy denoted by ‘SYNC’ can have a negative effect, and leads to the heuristic being unable to
fully explore the search space. Again, a hybrid approach where the strategy is adapted as the solution of
the problem progresses would work best.

The effect of component diversity was not found to be very significant, demonstrating the effectiveness
and proving the generality of our solution approach to boards of varied kinds typically found across multiple
industry domains (for example, avionics boards typically contain a large and diverse population of component
and chip types, whereas certain specialized and consumer electronics boards can sometimes contain only one
type of component replicated on hundreds of locations).

5.2.2 Effect of Using the Column Generation Strategy on Performance

We also examined through various computational experiments the influence of using the column generation
strategy as opposed to the random large column set selection strategy. A typical run for a 400 component
instance is shown in Figure 21 where ‘CG’ stands for column generation. It is clear from the results obtained
that column generation does help, especially for larger test cases, when it becomes prohibitive to randomly

23

Effect of extraction strategy

300

400

500

600

700

800

900

0 10 20 30 40 50 60

CPU time (min.)

O
b

je
c

ti
v

e
 v

a
lu

e

ASYNC

PASYNC

SYNC

Figure 20: Effect of different extraction strategies on heuristic performance

select a good and large enough column set without choking the ILP solver. For smaller test cases, the benefits
obtained are to some degree balanced out in many cases by the extra computational effort in generating
columns iteratively. Again, it was observed that the maximum string length does not play a significant role
in the performance of the heuristic.

5.3 Scalability of Performance

5.3.1 Initial Solution Generation Heuristic

The initial solution heuristic was found to consume computational time that only linearly grows with the
number of components, while remaining independent of component diversity, and growing logarithmically
and flattening out with an increasing number of spindles. In Tables 2, 3, and 4, the column ‘Init. soln.
time’ shows the total running time of this heuristic. All three tables are based on data for runs carried out
over 1,000 iterations. These trends are in line with our expectations given the nature of the initial solution
generation heuristic as an increasing number of components reflects in a near-linearly increasing network size
in terms of the number of nodes, whereas an increasing number of spindles corresponds also to an increasing
network size for the GTSP, but simultaneously also causes a decrease in the number of routes needed, which
at some point becomes the dominating factor and causes the flattening effect. Component diversity does not
appear to significantly affect the initial solution generation heuristic’s performance.

5.3.2 Improvement Heuristic

Tables 2, 3, 4, and 5 give further details on the improvement heuristic. We note that the computational time
and memory requirements for the improvement heuristic are reasonable. The average number of columns in
the formulated ILP in each iteration grows substantially with the number of components, Table 2 (due to
the combinatorial explosion), but grows only linearly with number of spindles, Table 3. On the other hand,
the average running time per iteration grows drastically both in the number of components and the number
of spindles on the head. The average number of rows in the formulated integer program at each iteration,

24

Effect of column generation

50

60

70

80

90

100

0 50 100 150 200 250

CPU time (min.)

%
 O

b
je

c
ti

v
e

 v
a

lu
e

WithCG

WithoutCG

Figure 21: Effect of column generation strategy on heuristic performance

meanwhile, grows linearly with the increasing number of components, while actually slightly decreasing with
the increasing number of spindles (due to the lower number of resultant routes in the solution). These trends
are again more or less aligned with our expectations given the design and nature of the heuristic.

Table 2: Effect of increased number of components
of comps Init. soln. time Avg. iter. time # of IP rows # of IP cols

(mins.) (mins.)
29 0.53 0.16 161 10,829
67 1.27 0.22 381 15,468
129 3.77 0.71 706 22,239
241 4.81 2.97 1,315 55,854
461 10.44 192.17 2,498 144,685

Table 5 (also averaged over 1,000 iterations) shows the time to obtain 10%, 25%, and 50% improvements
in the objective function for increasingly complex instances in terms of number of components, component
diversity, and number of spindles. We observe from this table that initial improvements are very quick and
further improvements take substantially longer times. Also, the same trends of increasing complexity leading
to increased run times can be observed in these numbers.

5.4 Development of a Regression Equation

Based on extensive experimentation over a typical range of parameter and problem size values found in
industrial settings, we developed a regression equation incorporating the influence of the number of compo-
nents, number of spindles, and the extraction probability with a progression in time in order to be able to
provide a mechanism for estimating the value of the objective function as well as for the expected percent
decrease in it as a function of time and problem size. We leave out the effect of the selection and extraction

25

Table 3: Effect of increased number of spindles
of spindles # of comps Init. soln. time Avg. iter. time # of IP rows # of IP cols

(mins.) (mins.)
6 202 4.59 0.88 1,088 38,707
12 202 14.55 2.55 1,007 77,191
18 202 45.66 16.15 1,017 102,262
24 202 93.53 45.87 1,010 120,575

Table 4: Effect of increased component diversity
of comp. types # of comps Init. soln. time Avg. iter. time # of IP rows # of IP cols
(CTs) (mins.) (mins.)
20 200 2.62 0.86 1,111 35,257
40 200 2.60 0.86 1,111 34,316
80 200 2.63 0.75 1,111 33,201
160 200 2.65 0.86 1,111 32,829

Table 5: Effect of increased no. of components, spindles, and component diversity
Time to Time to Time to

of comps # of CTs # of spindles 10% impr. 25% impr. 50% impr.
(mins.) (mins.) (mins.)

100 10 5 0.06 0.12 7.73
100 80 5 0.06 1.02 27.82
100 80 20 0.25 0.59 23.75
100 10 20 0.25 0.63 12.20
200 40 5 0.35 4.15 38.05
200 40 15 11 26.10 144.81
400 40 5 3.02 7.50 156.67
400 320 5 17 104.50 981.38

26

strategies, as their choice is dominatingly clearer, and thus not a key issue for prediction in potential future
cases. The regression model reads

Y = p0 + p1 ·X1 +

(
p2
X2

+
p5
X2

2

)
+
(
p3 ·X3 + p6 ·X2

3

)
+ p4 · exp(−X4). (3)

In equation (3), Y is the predicted variable, namely, the value of the objective function as a function
of the predictor variables X1, ..., X4, which refer to the number of components, the number of spindles, the
extraction probability, and the CPU time spent. The corresponding parameters p0, ..., p6 are used to fit
the curve to the experimental data and for validating the regression model. Table 7 lists the regression
coefficients.

This equation has been validated over the collected data and it obtains a good fit with an R2 value of
almost 0.8. Table 6 shows a summary of the fitted model. The model provides a satisfactory explanation of
the observed data and contains terms that logically make sense in light of the physical understanding of the
system being modeled, e.g., the value decreases negatively exponentially with respect to time and inversely
with respect to the number of spindles used on the machine. On the other hand, the extraction probability
turned out to be included as a quadratic polynomial explaining the valley effect (i.e. the performance of lower
probabilities being better until a certain minimum threshold probability is hit beyond which the performance
starts deteriorating again) over the range in question.

Table 6: Regression model summary
Source Degrees of Sum of Squares Mean Square F Value Approx. Pr > F

freedom
Model 6 2.2053e+9 3.6755e+8 163,449 <.0001
Error 273,192 6.1433e+8 2248.7
Corrected Total 273,198 2.8196e+9

Table 7: Regression model parameter estimates
Parameter Estimate Approx Std Error Approx 95% lower Approx 95% upper

confidence interval confidence interval
p0 -66.67 0.980 -68.58 -64.75
p1 1.340 0.001 1.34 1.34
p2 954.40 16.637 921.80 987.00
p3 -371.00 2.240 -375.40 -366.60
p4 65.90 0.846 64.26 67.58
p5 -1149.60 60.276 -1267.70 -1031.40
p6 670.50 5.308 660.10 680.90

References

[1] Ahmadi, J., Ahmadi, R., Matuso, H., and Tirupati, D. Component fixture positioning/sequencing
for printed circuit board assembly with concurrent operations. Operations Research 43, 3 (1995), 444–
457.

[2] Altinkemer, K., Kazaz, B., Köksalan, M., and Moskowitz, H. Optimization of printed circuit
board manufacturing: Integrated modeling and algorithms. European Journal of Operational Research
124, 2 (2000), 409–421.

[3] Applegate, D., Bixby, R., Chvatal, V., and Cook, W. CONCORDE TSP solver. Website
http://www.tsp.gatech.edu/concorde.html (2009).

27

[4] Ayob, M., and Kendall, G. A triple objective function with a Chebychev dynamic pick-and-place
point specification approach to optimise the surface mount placement machine. European Journal of
Operational Research 164, 3 (2005), 609–626.

[5] Ayob, M., and Kendall, G. A survey of surface mount device placement machine optimisation:
Machine classification. European Journal of Operational Research 186, 3 (2008), 893–914.

[6] Ball, M. O., and Magazine, M. J. Sequencing of insertions in printed circuit board assembly.
Operations Research 36, 2 (1988), 192–201.

[7] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. Branch-and-
price: Column generation for solving huge integer programs. Operations Research 46, 3 (1998), 316–329.

[8] Burke, E. K., Cowling, P. I., and Keuthen, R. Effective heuristic and metaheuristic approaches
to optimize component placement in printed circuit board assembly. Proceedings of the 2000 Congress
on Evolutionary Computation 1 (2000).

[9] Clarke, G., and Wright, J. Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research 12, 4 (1964), 568–581.

[10] Crama, Y., van de Klundert, J., and Spieksma, F. C. R. Production planning problems in
printed circuit board assembly. Discrete Applied Mathematics 123, 1-3 (2002), 339–361.

[11] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische Mathematik 1, 1
(1959), 269–271.

[12] Ellis, K. P., Kobza, J. E., and Vittes, F. J. Development of a placement time estimator function
for a turret style surface mount placement machine. Robotics and Computer Integrated Manufacturing
18, 3-4 (2002), 241–254.

[13] Ellis, K. P., Vittes, F. J., and Kobza, J. E. Optimizing the performance of a surface mount
placement machine. IEEE Transactions on Electronics Packaging Manufacturing [see also IEEE Trans-
actions on Components, Packaging and Manufacturing Technology, Part C: Manufacturing] 24, 3 (2001),
160–170.

[14] Feremans, C., and Grigoriev, A. Approximation schemes for the generalized geometric problems
with geographic clustering. METEOR, Maastricht research school of Economics of TEchnology and
ORganizations; University Library, Universiteit Maastricht, 2004.

[15] Fischetti, M., Salazar Gonzalez, J. J., and Toth, P. The symmetric generalized traveling
salesman polytope. Networks 26, 2 (1995), 113–123.

[16] Fischetti, M., and Toth, P. The generalized traveling salesman and orienteering problems. Com-
binatorial Optimization 12 (2002), 609–662.

[17] Franceschi, R. D., Fischetti, M., and Toth, P. A new ILP-based refinement heuristic for vehicle
routing problems. Mathematical Programming 105, 2 (2006), 471–499.

[18] Golden, B. L., Raghavan, S., and Wasil, E. A. The vehicle routing problem: Latest advances and
new challenges, vol. 43 of Operations Research/Computer Science Interfaces Series. Springer, 2008.

[19] Grunow, M., Günther, H. O., Schleusener, M., and Yilmaz, I. O. Operations planning for
collect-and-place machines in PCB assembly. Computers & Industrial Engineering 47, 4 (2004), 409–429.

[20] Gyorfi, J. S., and Wu, C. H. An efficient algorithm for placement sequence and feeder assignment
problems with multiple placement-nozzles and independent link evaluation. IEEE Transactions on
Systems, Man, and Cybernetics:Part A: Systems and Humans 38, 2 (2008), 437.

[21] Haberle, K. R., and Graves, R. J. Cycle time estimation for printed circuit board assemblies. IEEE
Transactions on Electronics Packaging Manufacturing [see also IEEE Transactions on Components,
Packaging and Manufacturing Technology, Part C: Manufacturing] 24, 3 (2001), 188–194.

28

[22] Haimovich, M., Kan, A. H. G. R., and Stougie, L. Vehicle routing: methods and studies. North-
Holland, 1988, ch. Analysis of heuristics for vehicle routing problems, pp. 47–61.

[23] Hirvikorpi, M., Knuutila, T., Johnsson, M., and Nevalainen, O. A general approach to
grouping of PCB assembly jobs. International Journal of Computer Integrated Manufacturing 18, 8
(2005), 710–720.

[24] Ho, W., and Ji, P. Component scheduling for chip shooter machines: a hybrid genetic algorithm
approach. Computers & Operations Research 30, 14 (2003), 2175–2189.

[25] Ho, W., Ji, P., and Dey, P. K. Optimization of PCB component placements for the collect-and-place
machines. The International Journal of Advanced Manufacturing Technology 37, 7 (2008), 828–836.

[26] ILOG Inc. CPLEX linear optimizer and mixed integer optimizer v. 11.0. Website http://www.ilog.com
(2009).

[27] Ji, P., and Wan, Y. F. Planning for printed circuit board assembly: the state-of-the-art review.
International Journal of Computer Applications in Technology 14, 4 (2001), 136–144.

[28] Kazaz, B., and Altınkemer, K. Optimization of multi-feeder (depot) printed circuit board manu-
facturing with error guarantees. European Journal of Operational Research 150, 2 (2003), 370–394.

[29] Knuutila, T., Pyottiala, S., and Nevalainen, O. S. Minimizing the number of pickups on a
multi-head placement machine. Journal of the Operational Research Society 58, 1 (2007), 115.

[30] Kulak, O., Yilmaz, I. O., and Günther, H. O. PCB assembly scheduling for collect-and-place
machines using genetic algorithms. International Journal of Production Research 45, 17 (2007), 3949–
3969.

[31] Kumar, R., and Luo, Z. Optimizing the operation sequence of a chip placement machine using TSP
model. IEEE Transactions on Electronics Packaging Manufacturing 26, 1 (2003), 14–21.

[32] Lapierre, S. D., Debargis, L., and Soumis, F. Balancing printed circuit board assembly line
systems. International Journal of Production Research 38, 16 (2000), 3899–3911.

[33] Leu, M. C., Wong, H., and Ji, Z. Planning of component placement/insertion sequence and feeder
setup in PCB assembly using genetic algorithm. Journal of Electronic Packaging 115, 4 (1993), 424.

[34] Li, S., Hu, C., and Tian, F. Enhancing optimal feeder assignment of the multi-head surface mounting
machine using genetic algorithms. Applied Soft Computing Journal 8, 1 (2008), 522–529.

[35] Parkhi, K. Printed circuit board: World outlook. Tech. Rep. 844-F2, Visant Strategies, Inc., 2007.

[36] Salonen, K., Smed, J., Johnsson, M., and Nevalainen, O. Grouping and sequencing PCB
assembly jobs with minimum feeder setups. Robotics and Computer Integrated Manufacturing 22, 4
(2006), 297–305.

[37] Sarvanov, V. I., and Doroshoko, N. N. The approximate solution of the travelling salesman
problem by a local search algorithm with scanning neighborhoods of factorial cardinality in cubic time.
Software: Algorithms and Programs 31 (1981), 11–13.

[38] Seth, A., Klabjan, D., and Ferreira, P. M. Analyses of advanced iterated tour partitioning
heuristics for generalized vehicle routing problems. Tech. rep., Northwestern University, Available from
http://www.klabjan.dynresmanagement.com, 2009.

[39] SIPLACE-Americas. Siemens automation electronic assembly systems. Siemens’ official website
http://ea.automation.siemens.com (2009).

[40] Smed, J., Johnsson, M., Johtela, T., and Nevalainen, O. Techniques and applications of
production planning in electronics manufacturing systems. Tech. Rep. 320, Turku Centre for Computer
Science, 1999.

29

[41] Su, C., Ho, L., and Fu, H. A novel tabu search approach to find the best placement sequence and
magazine assignment in dynamic robotics assembly. Integrated Manufacturing Systems 9, 6 (1998),
366–376.

[42] Tirpak, T. M., Nelson, P. C., and Asmani, A. J. Optimization of revolver head SMT machines us-
ing adaptive simulated annealing (ASA). In Proceedings of the Twenty-Sixth IEEE/CPMT International
Electronics Manufacturing Technology Symposium (2000), pp. 214–220.

[43] Toth, P., and Vigo, D. The vehicle routing problem. Monographs on discrete mathematics and
applications. Society for Industrial and Applied Mathematics, 2002.

[44] Wilhelm, W. E., Arambula, I., and Choudhry, N. N. D. Optimizing picking operations on
dual-head placement machines. IEEE Transactions on Automation Science and Engineering [see also
IEEE Transactions on Robotics and Automation] 3, 1 (2006), 1–15.

[45] Wilhelm, W. E., Choudhry, N. D., and Damodaran, P. A model to optimize placement opera-
tions on dual-head placement machines. Discrete Optimization 4, 2 (2007), 232–256.

[46] Wilhelm, W. E., and Tarmy, P. K. Circuit card assembly on tandem turret-type placement
machines. IIE Transactions 35, 7 (2003), 627–645.

[47] Yilmaz, I., and Günther, H.-O. A group setup strategy for PCB assembly on a single automated
placement machine. In Operations Research (2005), H.-D. Haasis, H. Kopfer, and J. Schönberger, Eds.,
pp. 143–148.

A Detailed Integer Linear Program (ILP) Model Formulation for
Improvement Phase

We formulate herein the integer linear program allowing feeder magazine motions and spindle jumping by
using a bi-complete and total asynchronous extraction strategy.

A.1 Parameters

FB = set of extracted board nodes

FF = set of extracted feeder nodes

SB = sequence pool for board node sequences (potentially all board node sequences)

SF = sequence pool for feeder node sequences (potentially all feeder node sequences)

IB = set of candidate insertion points for board node sequences

IF = set of candidate insertion points for feeder node sequences

SP = set of spindles

C = capacity of the head (vehicle) = |SP|

r = route

rF = sequence of nodes corresponding to part of route r covering the feeder nodes

rB = sequence of nodes corresponding to part of route r covering the board nodes

R = ordered list of all routes

I(r) = set of insertion points (i.e. arcs) associated with route r

Q = head capacity

30

q̃(s) = contribution to capacity usage of sequence s, i.e. number of nodes in node sequence s

c̃(s) = cost of sequence s

γfi = additional cost due to insertion of sequence f ∈ SF at insertion point i

γbi = additional cost due to insertion of sequence b ∈ SB at insertion point i

l2(r) = insertion point corresponding to the GBN −GFN arc in the route r

l1(r) = insertion point corresponding to the GFN −GBN arc in the route r

B(s) = beginning node of sequence s

L(s) = last node of sequence s

T (s, sp) =

{
1 if spindle sp is used in sequence s

0 otherwise

t̃(s, sp) = component type number carried by spindle sp in the sequence s, returns 0 if none

FMp(n) = feeder position at node n ∈ GFN

γfi = insertion cost of reinserting a sequence of feeder nodes f ∈ SF into a GFN − GFN type insertion
point i ∈ IF

γ
LF

1

fl1(r)
= insertion cost only on the feeder side of reinserting a sequence f ∈ SF of GFN nodes into a

GFN −GBN type insertion point i ∈ I(r)

γ
LF

2

fl2(r−1) = insertion cost only on the feeder side of reinserting a sequence f ∈ SF of GFN nodes into a

GBN −GFN type insertion point i ∈ I(r−1); note that the cost of the neighboring route of the route
containing i is influenced

γbi = insertion cost of reinserting a sequence b ∈ SB of GFN nodes into a GBN − GBN type insertion
point i ∈ IB

γbl2(r) = insertion cost of reinserting a sequence b ∈ SB of GBN nodes into a GBN −GFN type insertion
point i ∈ I(r)

γ
LB

2

fl2(r)
= insertion cost only on the board side of reinserting a sequence f ∈ SF of GFN nodes into a

GBN −GFN type insertion point i ∈ I(r)

γbl1(r) = insertion cost of reinserting a sequence b ∈ SB of GBN nodes into a GFN −GBN type insertion
point i ∈ I(r)

γ
LB

1

fl1(r)
= insertion cost only on the board side of reinserting a sequence f ∈ SF of GFN nodes into a

GFN −GBN type insertion point i ∈ I(r)

A.2 Decision variables

ybi =

{
1 if board node sequence b is allocated to the insertion point i ∈ IB ,

0 otherwise.

xfi =

{
1 if feeder node sequence f is allocated to the insertion point i ∈ IF ,

0 otherwise.

tr = time for route r

FMr = amount the feeder can move when the head is executing route r

31

A.3 Objective Function and Constraints

The objective function reads

min

|R|∑
r=1

tr.

The constraints are as follows.

c̃(rF) +
∑
f∈SF

∑
i∈IF∩I(r)

γfi · xfi

+
∑
f∈SF

γ
LF

1

fl1(r)
· xfl1(r) +

∑
f∈SF

γ
LF

2

fl2(r−1) · xfl2(r−1)

+max

c̃(rB) +
∑
b∈SB

∑
i∈IB∩I(r)

γbi · ybi

+
∑
b∈SB

γbl2(r) · ybl2(r) +
∑
f∈SF

γ
LB

2

fl2(r)
· xfl2(r)

+
∑
b∈SB

γbl1(r) · ybl1(r) +
∑
f∈SF

γ
LB

1

fl1(r)
· xfl1(r), FMr/V elocityf

 = tr r ∈ R (4)

|
∑

f∈FF

xfl2(r) · FMp(B(f))+

(1−
∑

f∈FF

xfl2(r)) · FMp(B((r + 1)F))−

∑
f∈FF

xfl1(r) · FMp(L(f))−

(1−
∑

f∈FF

xfl1(r)) · FMp(L(rF))| = FMr/SlotWidth r ∈ R (5)

∑
f∈SF

xfi ≤ 1 i ∈ IF (6)

∑
b:BN(v)∈b

(∑
r∈R

(ybl2(r) + ybl1(r)) +
∑
i∈IB

ybi

)
= 1 v ∈ FB (7)

∑
b∈SB

ybi ≤ 1 i ∈ IB (8)

32

∑
f∈SF

xfl1(r) +
∑
b∈SB

ybl1(r) ≤ 1 r ∈ R (9)

∑
f∈SF

xfl2(r) +
∑
b∈SB

ybl2(r) ≤ 1 r ∈ R (10)

t̃(rF , sp)− t̃(rB , sp) +∑
f∈SF

t̃(f, sp) ·

 ∑
i∈I(r)∩IF

xfi + xfl1(r) + xfl2(r−1)

 −

∑
b∈SB

t̃(b, sp) ·

 ∑
i∈I(r)∩IB

ybi + ybl1(r) + ybl2(r)

 = 0 r ∈ R, sp ∈ SP (11)

T (rF , sp) +
∑
f∈SF

T (f, sp) ·

 ∑
i∈I(r)∩IF

xfi + xfl1(r) + xfl2(r−1)

 ≤ 1 r ∈ R, sp ∈ SP (12)

T (rB , sp) +
∑

i∈I(r)∩IB

∑
b∈SB

T (b, sp) ·

 ∑
i∈I(r)∩IB

ybi + ybl1(r) + ybl2(r)

 ≤ 1 r ∈ R, sp ∈ SP (13)

q̃(rF) +
∑
f∈SF

∑
i∈IF∩I(r)

q̃(f) ·

 ∑
i∈I(r)∩IF

xfi + xfl1(r) + xfl2(r−1)

 ≤ C r ∈ R (14)

q̃(rB) +
∑
b∈SB

∑
i∈IB∩I(r)

q̃(b) ·

 ∑
i∈I(r)∩IB

ybi + ybl1(r) + ybl2(r)

 ≤ C r ∈ R (15)

xfi binary f ∈ Sf , i ∈ IF (16)

ybi binary b ∈ Sb, i ∈ IB (17)

tr ≥ 0 r ∈ R (18)

FMr ≥ 0 r ∈ R (19)

Constraint (4) models tr, the time to complete a route. The first term represents the cost on the feeder
side of the short-cutted solution. The cost of inserting a GFN node sequence into a GFN − GFN type
insertion point is given by the second term, into a GFN − GBN type insertion point by the third term,
and into a GBN − GFN type insertion point by the fourth term. The maximum function captures the
waiting cost due to the moving feeder and the two terms in it represent the cost of moving the feeder and the
cost of the vehicle’s trip to the customers before returning to the feeder. The cost incurred by the vehicle’s
trip is computed as the sum of the cost of the short-cutted solution, the cost of inserting a GBN node
sequence into a GBN−GBN type insertion point, and the cost of inserting GFN and GBN node sequences
into GFN − GBN and GBN − GFN type insertion points. Constraint (5) models the cost of the feeder
movement. The terms capture the two possibilities each for determining the last feeder node to be visited in
a given route and the first feeder node to be visited in its subsequent route. Constraints (6) and (8) specify
that no more than one sequence can be inserted at an insertion point. Constraint (7) states that every board
node can belong to exactly one re-inserted string. Constraints (9) and (10) state that only one of a feeder
or board node can be reinserted at route junction points in order to reconstruct a solution. Constraint (11)
balances the component types between the board and feeder route segments, whereas constraints (12) and
(13) ensure no spindle reusage within the board and feeder route segments. Constraints (14) and (15) enforce
capacity limitations on the head on the feeder and board segments, respectively.

33

A.4 Linearization of Constraints

We note that (1) and (2) are non linear constraints. Rewriting the constraints in a linearized form and using,

k1fr = FMp(L(rF))− FMp(L(f))
k2fr = FMp(B(f))− FMp(B((r + 1)F))

k3r = FMp(B((r + 1)F))− FMp(L(rF))

we obtain

c̃(rF) +
∑
f∈SF

∑
i∈IF∩I(r)

γfi · xfi +
∑
f∈SF

γ
LF

1

fl1(r)
· xfl1(r) +

∑
f∈SF

γ
LF

2

fl2(r−1) · xfl2(r−1)

+c̃(rB) +
∑
b∈SB

∑
i∈IB∩I(r)

γbi · ybi +
∑
b∈SB

γbl2(r) · ybl2(r) +
∑
f∈SF

γ
LB

2

fl2(r)
· xfl2(r)

+
∑
b∈SB

γbl1(r) · ybl1(r) +
∑
f∈SF

γ
LB

1

fl1(r)
· xfl1(r) ≤ tr r ∈ R (20)

−V elocityf ·

tr − c̃(rF)−
∑
f∈SF

∑
i∈IF∩I(r)

γfi · xfi

−
∑
f∈SF

γ
LF

1

fl1(r)
· xfl1(r) −

∑
f∈SF

γ
LF

2

fl2(r−1) · xfl2(r−1)

≤
∑

f∈FF

xfl1(r) · k1fr +
∑

f∈FF

xfl2(r) · k2fr + k3r r ∈ R (21)

∑
f∈FF

xfl1(r1) · k1fr +
∑

f∈FF

xfl2(r) · k2fr + k3r

≤ V elocityf ·

tr − c̃(rF)−
∑
f∈SF

∑
i∈IF∩I(r)

γfi · xfi

−
∑
f∈SF

γ
LF

1

fl1(r)
· xfl1(r) −

∑
f∈SF

γ
LF

2

fl2(r−1) · xfl2(r−1)

 r ∈ R. (22)

We split constraints (4) and (5) into their linearized forms, thereby getting rid of the troublesome maxi-
mum and absolute value functions.

B Pricing Problem Formulation for Improvement Phase

The dual of the above linear program has the objective

max

{∑
r∈R

(c̃(rF) +
∑
r∈R

c̃(rB)) · wA
r +

∑
r∈R

(V elocityf c̃(r
F)− k3r) · wB

r +
∑
r∈R

(V elocityf c̃(r
F) + k3r) · wC

r

+
∑
i∈IF

wD
i +

∑
v∈FB

wE
v +

∑
i∈IB

wF
i +

∑
r∈R

wG
r +

∑
r∈R

wH
r +

∑
r∈R

∑
s∈SP

(t̃(rF , s)− t̃(rB , s)) · wI
rs

+
∑
r∈R

∑
s∈SP

(1− T (rF , s)) · wJ
rs +

∑
r∈R

∑
s∈SP

(1− T (rB , s)) · wK
rs +

∑
r∈R

(C − q̃(rF)) · wL
r +

∑
r∈R

(C − q̃(rB)) · wM
r

+
∑
i∈IF

wE
i +

∑
v∈FB

wF
v +

∑
i∈IB

wG
i

}
(23)

34

subject to constraints

wA
r + V elocityf · wB

r + V elocityf · wC
r ≤ 1 r ∈ R (24)

∑
r∈R

{
−γfi · wA

r − (V elocityf · γfi − k1fr) · wB
r −

∑
s∈SP

wJ
rs · T (f, s)

(−V elocityf · γfi + k1fr) · wC
r − wD

i −
∑
s∈SP

wI
rs · t̃(f, s)− wL

r · q̃(f)

}
≤ 0 f ∈ SF ,

i ∈ IF ∩ I(r)∑
r∈R

{
−(γ

LF
1

fi + γ
LB

1

fi) · wA
r − V elocityf · γLF

1

fi · wB
r −

∑
s∈SP

wJ
rs · T (f, s)

−V elocityf · γLF
1

fi · wC
r − wG

r −
∑
s∈SP

wI
rs · t̃(f, s)− wL

r · q̃(f)

}
≤ 0 f ∈ SF , i = l1(r)

∑
r∈R

{
−(γ

LF
2

fi − V elocityf · γLF
2

fi · wB
r −

∑
s∈SP

wJ
rs · T (f, s)

−V elocityf · γLF
2

fi · wC
r −

∑
s∈SP

wI
rs · t̃(f, s)− wL

r · q̃(f)

}
≤ 0 f ∈ SF , i = l2(r − 1)

∑
r∈R

{
−k2fr · wB

r − k2fr · wC
r − γ

LB
2

fi · wA
r − wH

r

}
≤ 0 f ∈ SF , i = l2(r)

∑
r∈R

{
−γbi · wA

r −
∑
s∈SP

wK
rs · T (b, s)

−wF
i −

∑
s∈SP

wI
rs · t̃(b, s)− wM

r · q̃(b)

}
≤ 0 b ∈ SB ,

i ∈ IB ∩ I(r)∑
r∈R

{
−γbi · wA

r −
∑
s∈SP

wK
rs · T (b, s)

−wF
i − wG

r − wH
r −

∑
s∈SP

wI
rs · t̃(b, s)− wM

r · q̃(b)

}
≤ 0 b ∈ SB ,

i ∈ {l1(r), l2(r)}
wA

r , w
B
r , wC

r , w
G
r , w

H
r , wL

r , w
M
r ≥ 0 r ∈ R (25)

wE
v unrestricted v ∈ FF ∪ FB (26)

wI
rs unrestricted r ∈ R, s ∈ SP

(27)

wJ
rs, w

K
rs ≥ 0 r ∈ R, s ∈ SP

(28)

wD
i , wF

i ≤ 0 i ∈ IF ∪ IB (29)

wI
r , w

J
r ≤ 0 r ∈ R (30)

where wA, wB , ..., wM are dual variables corresponding to the 13 constraint sets labelled (20) - (22) and (6) -
(15). The column generation subproblem (i.e. finding the column with the minimum reduced cost) reduces
to one with the following form for a given insertion point i:

35

max
r∈R

max
f∈SF

−β1 · (TSP cost for f at i) + β2 ·
∑
v∈f

αv + β3

for xfi variables, and, similarly, for ybi variables we have

max
r∈R

{
max
b∈SB

{
−β1 · (TSP cost for b at i) + β2 ·

∑
v∈b

αv + β3

}}
.

In both cases, we have to solve |R| maximum weight circuit problems.

36

