
Challenges of CAD Development for Datapath Design 1

Challenges of CAD Development for Datapath Design

Tim Chan, Design Technology, Intel Corp.
Amit Chowdhary, Design Technology, Intel Corp.
Bharat Krishna, Design Technology, Intel Corp.
Artour Levin, Design Technology, Intel Corp.
Gary Meeker, Design Technology, Intel Corp.
Naresh Sehgal, Design Technology, Intel Corp.

Index words: datapath, synthesis, automation, and generation

Abstract

In many high-performance VLSI designs, including all
recent Intel microprocessors, datapath is imple-
mented in a bit-sliced structure to simultaneously ma-
nipulate multiple bits of data. The circuit and layout of
such structures are largely kept the same for each bit-
slice to achieve maximal performance, higher designer
productivity, and better layout density. There are very
few tools available to automate the design of a general
datapath structure, most of which is done manually.
Datapath design (from RTL to layout) very often takes
a significant amount of human resources in a project.
The design is becoming more complex and demand-
ing as the clock frequency is reaching 1GHz, and the
process technology is getting to 0.15um and below.
Issues with signal integrity, as well as leakage current,
are much more significant now as VCC and VT con-
tinue to be reduced and current density increases.
Elaborate analyses on noise and power are needed
for future designs, beyond the already complex tim-
ing, reliability, and functional correctness analysis tasks.
The burden on CAD tools to support the high-perfor-
mance microprocessor design is bigger than ever. This
paper reviews the general approaches used in the in-
dustry to design datapaths from RTL to layout with
the difficulties and issues encountered. We propose a
new design workflow and a set of tools to improve
overall designer productivity, while meeting all other
constraints. A description of these tools to support
the next generation of microprocessor design is also
presented. Our proposed flow allows a designer to
choose a design methodology ranging from a fully au-
tomated one to a custom one, to a flexible mix of the
two. We present a new paradigm of early binding that

considers the impact of circuit and layout during RTL
design. We also strive to preserve RTL regularity during
the circuit and layout design to improve time-to-mar-
ket. Finally, we present some results on actual design
blocks with the proposed tools and workflow, and
we suggest future areas for further research.

I. Introduction

In most microprocessor design projects, the design
team includes computer architects (particularly impor-
tant for a design with new architecture), micro-archi-
tects (who determine the amount of hardware resources
to be put in the chip and how the major data flow
occurs), logic designers, circuit designers, and layout
designers. Sometimes, these designers may have over-
lapping functions (for example, doing both circuit and
layout design) depending on the experience level of
the designers and the project management philoso-
phy. Nevertheless, in general, designers of different
disciplines need to communicate at different levels of
design abstraction, and a design can only be com-
pleted when design data at different abstraction levels
are consistent with each other and correct, meeting
the design objectives.

1.1. Traditional Datapath Design Flow

For most high-performance microprocessors, the
workflow for datapath design involves many labor-
intensive steps [1, 2]. Logic designers and micro-
architects determine the detailed features of hardware
and the methods used to achieve particular functions.
The number of pipe stages and which operations go
with each pipe stage are also determined. These de-
cisions are made with the help of bottom-up circuit

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 2

feasibility studies and some estimation tools for timing
and area. The processes of developing the most ap-
propriate computer architecture, micro-architecture,
or RTL are also very involved, but they are beyond
the scope of this paper. The starting point of the
workflow is a partition of RTL coding for which timing
and area estimations have been made and the results
are within acceptance tolerance.

Figure 1: Datapath design flow

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 3

1.1.1. RTL to Initial Circuit Translation and
Floor Planning
A circuit designer needs to study the functionality of
the block first and then come up with the initial imple-
mentation plan that includes logic stages (without com-
plete transistor sizing), floor planning, and circuit styles,
based on different timing, area, and routing constraints.
Depending on how experienced the designer is with
the design techniques required for the block, feasibil-
ity studies and evaluations of a few design options are
generally required to arrive at an implementation plan.

1.1.2. Schematic Design and Interconnect
Estimation
The process of schematic design and interconnect es-
timation follows. As interconnect capacitance can be
a significant portion of the total capacitance of a sig-
nal, a designer has to estimate the interconnects based
on the assumptions made in his/her floor plan. In or-
der to get a reasonable floor plan before actual layout
is available, layout cell areas and pin/port locations
are estimated. The �estimated� layout cells will be
tiled according to the floor plan. With this rough
datapath cell placement completed, interconnect lengths
can be estimated based on the cell locations.

Circuit topology, transistor sizes, and floor plans will
continue to evolve until a satisfactory design imple-
mentation is reached (though sometimes, the design
specifications and external interfaces might also need
to be modified). Once the schematic database for the
datapath block is established, many checks and analy-
sis can be performed.

1.1.3. Design Analysis
Next, the design with transistor sizes and interconnect
RC�s can be analyzed quite accurately for timing and
many other circuit robustness requirements such as
race conditions, noise tolerance, and long-term de-
vice and interconnect reliability. If the results of the
analysis are not acceptable, the routing, cell place-
ment, schematic design, RTL design or a combination
of these will need to be modified.

1.1.4. Custom Layout and Post-Layout Checks
When the schematic with the corresponding estimated
layout is satisfactory, layout can then be custom de-
signed. Incorrect assumptions used in the estimated
layout are corrected, and manual placement optimiza-
tion is used.

When actual layout is completed, RC extraction is
performed, and the RC netlists are merged back into
the schematic netlist. At this point, all analyses of tim-
ing, noise, and circuit robustness are performed on

the �accurate� netlist to verify that the design with ac-
tual layout data still meets the design requirements. If
there is any problem found with the design, the design
process is iterated until the design requirements are
met.

With the top-down design process, even though the
design requirements at one point are met, since other
blocks in the chip might require design changes, the
block needs to go through the Engineering Change
Order (ECO) process. This is a formal procedure to
communicate and implement changes to meet new re-
quirements. In other words, the design process is re-
entered.

1.2. Issues with Traditional Datapath Design
Flow
This design process mentioned above is quite top-down
driven and sequential. From RTL to circuit and then
to layout, each step makes a set of assumptions/esti-
mations and provides more accurate information than
the previous step. Each step of the design process
also takes a significant amount of time to finish. As a
result, poor estimations in early steps have very costly
consequences due to the amount of time and effort
required to make changes. In a large design project
with a large team, the problems get multiplied many
times over when poor estimates from one team mem-
ber affect the design of other team members. As de-
sign specs are changing, implementations are not stable.
Both become moving targets, and communication
overhead increases substantially. As we have observed,
large projects tend to require a long time for design
convergence (i.e., when different pieces fit together
and meet project requirements), and they have lower
design productivity.

1.3. The Direction of Higher Levels of Automa-
tion
The accuracy of early estimations, and the turnaround
time for the major design steps (e.g., RTL to circuit
design) are very important elements when considering
productivity in the design process. (Company cul-
ture, team maturity, design and management experi-
ence level are also part of the puzzle; however, these
are not discussed in this paper.) Interestingly, more
accurate early estimates and faster turnaround time
can both be achieved with design automation. Auto-
mation that provides the correct result quickly can
shorten the turnaround time, and it can also give more
accurate estimations for the options that designers want
to explore by quickly implementing these options.
Though it is by no means easy to automate the design
for high-speed complex microprocessor design using
deep sub-micron technology, a lot of effort has al-

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 4

ready been made in the academic arena and by EDA
companies. Automatic datapath cell layout genera-
tion and datapath block place and route tools are now
commercially available. Compilation to datapath cir-
cuit-level netlist from hardware description language
is also getting popular (in the less performance-critical
designs such as chip set design). Over time, manual
circuit and layout design techniques are digested by
CAD developers who then formulate methods and
heuristics to solve these design problems with CAD
tools. However, this work is just not done soon enough
to alleviate the burden of the designers for high-per-
formance designs.

1.4. Structure of the Paper
The objective of this paper is to share our view of the
high-performance datapath design problems and our
ideas of what the solutions will look like, by providing
some details of our work. Naturally, we don�t have
all the answers, but we believe that we have some
good ideas about how these problems should be ap-
proached. It is hoped that this paper will stimulate
readers to come up with more and better ideas.

The next section describes a more automated workflow
compared to the workflow just described. The new
workflow features automatic schematic generation
from RTL and layout synthesis. The techniques of regu-
larity extraction and how they are used in logic syn-
thesis and schematic generation are discussed in the
section on datapath logic synthesis. An efficient ap-
proach to design datapath schematics and to layout
planning together is described in the section on datapath
layout planning and placement. Accurate and efficient
RC estimation is essential to various steps of the de-
sign process, and it is discussed in the section on the
parasitic estimator. Datapath cell layout synthesis sig-
nificantly reduces layout design resources for high-per-
formance design, and it is discussed in the section on
layout cell generation.

II. A More Automated Design Flow
A new workflow, which drastically improves produc-
tivity, is shown in Figure 2. It supports synthesis from
RTL to layout, though with the understanding that
datapath synthesis techniques will take time to ma-
ture. Designers input and user interfaces are essential
to every step of the process.

Figure 2: A more automated datapath design flow

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 5

The rest of this section describes the rationale behind
each component of the design flow and gives the high-
level expectations of these steps.

2.1. Regularity Extraction
In this workflow, regularity extraction is performed
first to identify the repeated functionalities in RTL and
to come up with optimal logic templates for logic syn-
thesis at later stages. A good template needs to con-
tain a few stages of logic (at least) to allow for the
synthesis tool to perform optimization; however, it can-
not be too large (containing too many logic functions)
such that a lower level of regularity in circuit and lay-
out cannot be exploited and therefore cause device
density and performance to suffer as a result. In fact,
the main reason for doing regularity extraction is the
inability of the current synthesis tools to produce regular
structures from RTLs for repeating functions. Sec-
ondly, with a logical netlist available from regularity
extraction, designers can control the degree of regu-
larity used in synthesis and modify the outcome of syn-
thesis more easily.

2.2. Design Partitioning
This step is performed to identify what circuit style to
use for different parts of the design. The commonly
known circuit styles are static and dynamic. Normally,
static is the first choice due to the robust nature of the
style and the ease of design. However, in terms of
speed, dynamic circuits are generally about 30% faster,
and this style needs to be used when the speed of the
circuit is critical. The price of using dynamic circuits is
higher power consumption and greater design effort.
As for high fanin logic, the use of dynamic circuits is
more advantageous. Thus, a design partitioner is ex-
pected to estimate the timing performance of the
datapath block with static circuits and single out the
paths that are not meeting the performance require-
ments. Once some sections of the logic have been
identified for dynamic circuit implementation, the log-
ics going in as input to these dynamic circuits need to
be considered as candidates for dynamic implemen-
tation as well, in order to ensure correct circuit func-
tionality.

Also, it is expected that the current logic synthesis tools
are not able to produce optimized results for complex
special functions, such as a 32-bit adder (which in-
volves a lot of special circuit techniques and fine-tun-
ing). A datapath macro cell library (probably with
special macro cell-sizing techniques) needs to be used
to supplement the deficiency of current synthesis tools.
As a result, the design partitioner needs to identify the
logic functions that should be supported by a macro
cell library (such as adders, register files, and com-

parators) and later target those functions for macro
cell mapping and sizing.

2.3. Schematic Hierarchy and Floor Plan Direc-
tive Generation
Schematic hierarchy generation follows after design
partitioning is done, and even though at this point no
actual logic gate or transistors have been mapped, a
schematic hierarchy with logic templates can be cre-
ated. With schematics, circuit designers can profi-
ciently modify the design partitioning and hierarchy for
better synthesis results. Again, it is not expected that
perfect results can be achieved by the design
partitioner, and input from the designer is very crucial
at this point. With regularity reflected in the hierarchi-
cal schematics, designers can modify the datapath cell
placement directives (for placing cells into rows and
bit columns) that are created by tools using heuristics.

2.4. Integrated Logic Synthesis and Placement
System
Once the partitioner has been given input for synthesis
and directives for placement, the integrated synthesis
and placement phase is entered. The main reason an
integrated system for synthesis and placement is needed
is that doing logic synthesis without placement infor-
mation does not give good enough results for future
process technologies (0.15um or below). Transistor
intrinsic delay continues to improve, and the average
percentage of interconnect capacitance over the total
node capacitance continues to increase. Interconnect
delay has become an important component in very
high-performance design, and the traditional wire load
model used in control logic synthesis is not adequate
for high-performance datapath synthesis. Placement
information (in turn, RC information) needs to be avail-
able for the synthesis tool for correct sizing, buffering,
signal repeating, and circuit topology choice.

2.5. Integrated Schematic Design and Layout
Planning Environment
In the same spirit, designers need to be able to inter-
act with schematics (outcome of synthesis), and place-
ment needs to be integrated into the design tools. The
tools have to efficiently support modifications of sche-
matics and placement (RCs) by the designers, and be
quickly able to communicate the changes among them-
selves to enable designers to see the effects of their
changes (on timing, area, power, and noise, etc.).

2.6. Layout Cell Generation
When logic synthesis and global placement are com-
pleted, layout cells at the layout hierarchy assigned by
the placement tool are then generated. A lot of meth-

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 6

odology definitions have to be completed before lay-
out generation, such as power griding structures and
usage of metal layers for cell pins and ports. Metal
width and space requirements for reliability and noise
concerns are also considered.

Layout cell generation is not the only way to create
the bottom hierarchy of the layout. Library cells can
also be used as in the traditional control logic layout
synthesis. The layout quality of library cells is expected
to improve as more effort has been put into library
cells that are expected to be used by different projects.
However, layout density might not be as good when
compared to layout done with cell generation, since
cell generation processes more devices together and
has the opportunity to achieve better optimization.

2.7. Detailed Place and Route
After layout cells are generated, they can be used for
detailed place and route (which is the process of gen-
erating DRC-clean placement and routing, based on
the approximate (sometimes incomplete) results from
global placement and routing. If global place and route
are done well, it is expected that detailed place and
route will only change the RC results by 5%. When a
DRC-clean layout is completed, RC extraction can
be performed, and all the necessary post-layout analy-
sis can then be done with accurate RC information.
The analyses normally include electrical rule checks,
noise, timing violations, and setup and hold time checks
(min-delay analysis).

Now that we have outlined the overall design flow, we
focus on the details of the major design steps in the
following sections.

III. Datapath Logic Synthesis
Logic synthesis, which transforms a design from RTL
to circuit level, has been widely studied for control
logic. Logic synthesis [5, 6] involves two steps: logic
minimization followed by technology mapping to a user-
specified library. Datapath circuits possess a very high
degree of regularity that has to be preserved through-
out the design process to achieve high density and
performance. If the traditional logic synthesis approach
based on logic minimization is used, then some regu-
larity would be lost, resulting in inferior results. There-
fore, an ideal datapath synthesis approach should first
extract the regularity inherent in RTL descriptions prior
to mapping the circuit to a desired technology. The
extracted regularity results in a design hierarchy, which
should be preserved to achieve high design quality as
well as productivity.

We propose a novel methodology for logic synthesis
of datapath circuits, where the datapath regularity is
first extracted and then the circuit is mapped to a de-

sired technology while preserving regularity. The in-
put to our synthesis approach is an RTL description of
a datapath circuit. Regularity in the circuit implies the
existence of subcircuits, called templates, which have
multiple instances in the circuit. Regularity extraction
first identifies a sufficiently large set of templates and
their instances, and then completely covers the circuit
by a subset of these template instances. The template
instances are then grouped to form datapath vectors.
A schematic of the datapath is generated using these
vectors and the boundary constraints on the I/O buses
and signals. The schematic helps the designer in un-
derstanding the circuit and in making important deci-
sions about or changes to the templates and vectors
identified so far. The next step is to map the templates
to static and dynamic logic as desired, thus resulting in
efficient multi-technology designs. Finally, the mapped
templates are sized according to the loading on the
primary outputs of the circuit.

Figure 3: HDL description of a small datapath
circuit used to illustrate our synthesis approach

We describe below in detail the various steps in our
synthesis methodology of datapath circuits. We ex-
plain our methodology with the aid of the circuit in
Figure 3 (the corresponding logic diagram is shown in
Figure 4).

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 7

3.1. Regularity Extraction Techniques
The task of regularity extraction is to identify a set of
templates and their instances from the RTL descrip-
tion of the circuit (template generation step), and
then to cover the given circuit by a subset of these
templates (circuit covering step), where the objec-
tive is to use large templates that have a large number
of instances. Figure 5 illustrates a circuit cover with
four templates, where template T1 has six instances,
T2 has three instances, and so on. The extraction
step involves a tradeoff, since a large template usually
has a few instances, while a small template has a high
number of instances. Note that the template com-
posed of T2 followed by T1 has only three instances,
compared to six instances of T1. Usually, a large tem-
plate implies a better optimization of area and perfor-
mance, while a template with more instances requires
less design effort, assuming a template is synthesized
only once for all its instances.

Figure 4: Logic diagram of the circuit of figure 3;
the four templates shown here form a circuit cover

Several techniques for extraction of functional regu-
larity have been proposed in the literature [3, 4, 8, 9,
10, 11, 12]. Most of these techniques focus on cov-
ering a circuit by templates, assuming that a library of
templates is provided by the user. Very few tech-
niques address the problem of generating a good set
of templates. Given a library of templates, Corazao
et al. [8, 11] address the problem of mapping a circuit
described at a behavioral level using templates from
the target library. Their approach addresses several
key subproblems, such as finding complete as well as
partial matches of a template and selecting a good set
of templates to optimize the clock period. Rao and

Kurdahi [12] represent the input circuit as well as tem-
plates from the given library by strings, and they use a
string matching algorithm to find all instances of the
template in the circuit. These authors present heuris-
tics to generate a set of templates; the final cover is
highly sensitive to these templates. Odawara et al.
[9] present a methodology to identify structural regu-
larity in highly regular datapaths. In their method,
latches driven by the same control signals as initial tem-
plates are chosen and used to grow larger templates.
Odawara�s approach identifies one-dimensional regu-
larity in terms of bit-slices of the datapath. Other ap-
proaches by Nijssen et al. [10] and Arikati et al. [3]
extend Odawara�s methodology to identify bit slices
as well as stages of datapath circuits. These structural
methods perform well for highly regular circuits, but
might not work for circuits with a mix of datapath and
control logic. A problem similar to regularity extrac-
tion is technology mapping, where the input circuit is
covered by cells (templates) from a given library.
Keutzer [7] proposed partitioning the circuit into
rooted trees and then mapping the trees using library
cells, by using dynamic programming. All the above-
mentioned techniques address the problem of cover-
ing a circuit by templates, where the templates are ei-
ther provided by the user or generated in an ad hoc
manner. None of these techniques deal with the sys-
tematic generation of a set of templates for a given
circuit.

We have designed an efficient and robust approach
for extraction of functional regularity [13, 14], where
the set of all possible templates is generated automati-
cally for the input circuit under two simplifying, yet
practical assumptions: (a) only maximal templates are
considered, where a template is maximal if and only if
all its instances are not entirely covered by instances
of another template, and (b) input permutations of gates
in the RTL description are ignored. The number of
templates is reduced to within V2, where V is the num-
ber of components in the circuit. We have demon-
strated that a wide range of efficient covers are ob-
tained for various benchmarks from the set of tem-
plates generated by our approach [13]. Since a suffi-
ciently large set of templates is generated, and the binate
covering problem is inherently difficult [5], we employ
simple and efficient heuristics to cover the circuit. Our
approach recursively selects a template from the com-
plete set of templates, based on one of the following
heuristics, and deletes all its non-overlapping instances
from the input circuit, until the entire circuit is covered.

(a) Largest-fit-first (LFF) heuristic: select the tem-
plate with the maximum area, where the area of
every component is given.

(b) Most-frequent-fit-first (MFF) heuristic: select the
template with the maximum number of instances.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 8

These two heuristics give different covers; other heu-
ristics can be used to generate a range of covers from
which the designer can choose the most desirable cover.
In fact, we can represent the set of covers by a tem-
plate hierarchy, where regularity among different tem-
plates is recursively extracted [14]. In the event that a
template is specified by the designer, using our ap-
proach, all its instances can be generated and used for
finding a cover. Thus, a cover, which is a mix of auto-
matically extracted and user-specified templates, can
be generated. (We have filed a patent on our regular-
ity extraction approach [15]).

3.2. Vector Identification
So far, we have generated templates using functional
regularity [13] without accounting for the circuit struc-
ture in terms of the interconnections among the tem-
plate instances. As a result, the templates do not di-
rectly correlate with the datapath vectors. For ex-
ample, the six instances of template T1 in Figure 4
should belong to two different vectors. (Here, a vec-
tor is defined as a set of template instances that are
grouped together for subsequent synthesis and layout
stages.) We now consider structural regularity to trans-
form templates into datapath vectors [13]. We ex-
plain the steps of vector identification using the ex-
ample of Figure 4; the resulting vectors are shown in
Figure 5.

• Simple vectors: The instances of a template are
partitioned into vectors, which we call simple vec-
tors. For example, the template T1 of Figure 4 is
partitioned into two simple vectors, SV1 with two
instances and SV2 with four instances. The re-
maining templates result in a single simple vector
each.

• Composite vectors: Simple vectors of different
templates are grouped, if possible, to form com-
posite vectors. For example, simple vector SV1
of template T1 is grouped with the simple vector
of template T3 to form a composite vector V1
(see Figure 5).

The resulting vectors of the template cover of Figure 4
are shown in Figure 5. We use a set of efficient heu-
ristics to group template instances to form simple or
composite vectors. These heuristics are listed below.

1. Control/data inputs: The input signals of template
instances are classified as control or data from the
HDL description of Figure 3, e.g., sel1 is a con-
trol signal, while a[0] is a data signal. The in-
stances with the same control inputs and similar
data inputs are grouped together.

2. Output signal name: The instances whose out-
puts drive the same bus are grouped together. For
example, the instances of templates T2 and T4

are grouped together, since their outputs form the
bus g[3:0].

3. Circuit topology: Two template instances are
grouped in the same vector, only if one of them is
not in the transitive fanin of another. This heuristic
will ensure that the template T1 (Figure 4) would
be partitioned into at least two simple vectors, since
two of its instances are in the transitive fanin of
two other instances.

Figure 5: Schematic of example circuit obtained
after forming vectors from the templates of Figure 4

3.3. Schematic Generation
A schematic of the datapath circuit is generated using
the vectors identified earlier and the control/data as-
signment to the signals. The schematic for the ex-
ample circuit is shown in Figure 5. The schematic is
essential to allow designers to control the design pro-
cess: (a) they can get a much better understanding of
the circuit than they could from the HDL description;
(b) they can modify the design hierarchy and floorplan
by merging/breaking templates or vectors, changing
the control/data orientation of signals, and modifying
the order of vectors. An example of such a modifica-
tion is merging templates T2 and T1 to form a larger
template with three instances, which might lead to better
optimization during subsequent steps.

3.4. Technology Mapping
The input to technology mapping is the set of datapath
vectors and the I/O timing requirements in terms of
input arrival times and output loads. The partition of

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 9

the circuit into vectors (or underlying templates) al-
lows the designer to select a desired technology for
each template independently. Currently, our synthesis
flow assumes that the mapping of templates is per-
formed manually, which can be easily automated due
to the small size of templates. We explain several
choices for mapping of templates.

Figure 6: Several mappings of template T1 (Figure
4) to static and dynamic logic

• Static logic: The traditional approach of mapping
a circuit to static logic first decomposes the circuit
into smaller directed-acyclic graphs (DAGs) [5,
7] and then independently maps each DAG to the
specified library of static cells. In our case, the
templates are small enough to be mapped directly
without any decomposition. Figure 6 illustrates
two mappings of template T1 (Figure 4) to static
logic. Here, mapping 2 is suitable for template T1
in vector V3 of Figure 5, since one of the data
input signals arrives later than the other. On the
other hand, mapping 1 is suitable for T1 in vector
V1 (Figure 5). Thus, depending on the template
usage in the circuit, we might have to use several
mappings of a template.

• Dynamic logic: A template can be mapped to
dynamic logic to achieve better timing; however,
noise-related issues have to be considered, such
as the length of the input and output signals of the
template. Figure 4 also shows a mapping of tem-
plate T1 (Figure 4) to dynamic logic. We are look-
ing into automating the mapping of templates to
dynamic logic.

• Macro cells: Datapath circuits employ commonly
occurring logic blocks, such as incrementers,
adders, shifters, etc. A library of various map-
pings of these specialized datapath blocks for a
range of area, performance, and power values will
be required. For example, the incrementer in the
example circuit of Figures 3 - 5 can be replaced
by one of its mapped versions prior to extracting
regularity from the HDL description; our synthesis

flow would then result in vectors V1 and V3 shown
in Figure 5, while V2 would correspond to a macro
cell.

3.5. Gate Sizing
Once all the templates of a circuit are mapped to the
desired technology, every gate is sized to satisfy the
output load requirements. The output load capaci-
tance of a gate comprises the following components:

1. Gate capacitance: The capacitance values of the
gates driven by this particular gate are available
after the technology mapping step.

2. Diffusion capacitance: The diffusion capacitance
of the gate is also known after technology map-
ping.

3. Interconnect capacitance: The capacitance is
available only after the post-synthesis steps of
floorplanning and RC estimation. Therefore, in-
terconnect capacitance is used only in the gate-
sizing step in the subsequent design iterations.

4. Primary output load capacitance: The load ca-
pacitance is already specified for the primary out-
puts of the circuit.

The sizing of the gates of the mapped circuit is per-
formed starting from the primary outputs and travers-
ing back to the primary inputs, where the output load
requirement is satisfied for every gate encountered. If
there are loops in the circuit, then the gate sizes will
take a few iterations to converge.

Different instances of a template mapping will be sized
differently depending on the output load requirements.
In general, a template with multiple instances can have
several mappings, where each mapping can have sev-
eral different gate sizes.

Gate sizing is performed again after the interconnect
capacitance values are obtained from the floorplanning
and RC estimation steps.

3.6. Results
While the steps of technology mapping and sizing are
still under development, we have implemented proto-
types for regularity extraction and vector identifica-
tion. We list below the results of regularity extraction
and vector identification on two datapath blocks in
terms of the number of templates, vectors, and their
instances.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 10

We have defined an index, called a regularity index,
to evaluate the results of regularity extraction [13]. The
regularity index is defined as the percentage of the
number of logic components in all the templates to the
total number of logic components in the circuit. The
regularity index correlates to the reduction in the de-
sign effort, assuming that a template is not synthesized
multiple times for its multiple instances.

IV. Datapath Block Floorplanning and Place-
ment

4.1. Objectives of Layout Planning

Layout planning of datapath blocks is used to obtain
early estimates for block area and timing of critical
signals. The layout-based estimates are used during
the circuit design stage to carry out more accurate cir-
cuit simulations and design of datapath circuit sche-
matics. Layout planning support should provide the
following:

• speed and high interactivity (to enable
what-if analysis)

• reasonable estimates for area and
parasitics

• tradeoffs between accuracy and tool per-
formance

We have developed a set of tools, based on experi-
ence from a recent microprocessor design project.
These tools provide a user with the means to estimate
the layout area of a datapath block and the intercon-
nect parasitics from which quick timing analysis can
be performed. The designers can also estimate inter-
connect parasitics derived from minimum spanning trees
for rough estimates and actual global routes for more
accurate estimates.

4.2. Tasks in Layout Planning

The inputs to the tools are top-down block pin inter-
face, user-defined placement hints, and the netlist (which
may be incomplete). The tool provides a means to
visually see and edit the placement and change the
netlist. The netlist is modified if a cell used in the block
is changed because of the need for higher drive strength
or other interconnect optimization requirements. The
key functions performed in the layout planning stage
for interconnect optimization are as follows:

• cell area estimation and interface design

• identification of vectors and rows

• placement of cell instances (as part of vec-
tors)

• global routing and congestion analysis

• parasitic estimation and timing analysis

A key feature of the datapath layout planning is the
layout modeling. Due to the frequent occurrence of
multiple instantiations of a logic cell in datapath blocks,
an entity called a vector is created to represent a group
of instances, and layout editing on these groups of in-
stances is supported. Further, it is also observed that
the contents of a stage in the circuit design are placed
in a row and that the contents of a bit-slice are placed
in a column. Thus the complete layout plan is mod-
eled as a matrix. Commands are then provided to
move, delete, and/or create vectors, rows, matrices,
etc. This method of layout modeling helps ensure regu-
larity in the placement of cells in the layout plan.

After a reasonable placement has been determined, a
designer will then estimate interconnect parasitics.
Location of interface ports of the cell can also be
planned to enable better routing [16, 17]. The inter-
face planning can be carried out using Track Share
Analysis (TSA) or global routing. Based on the re-
sults of the global routing or the TSA, the interface
terminals (pins and ports) of the cells are placed at
appropriate locations, and the net length estimation
process proceeds.

An interactive graphical user environment has been
developed to support this layout planning process.
This environment also provides other features. A user
can plan for routing space and analyze routing con-
gestion information, which is derived from global rout-
ing. Based on the congestion analysis, the user can
manually adjust the placement and plan out for area.
The environment also provides net visualization and
editing functionality to interactively optimize the inter-
connect delay. The overall design flow for layout plan-
ning is shown in Figure 7.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 11

Figure 7: Layout planning design flow

4.3. Benefits of Layout Planning
From a recent Intel microprocessor design project,
effort analysis indicated that when early layout plan-
ning is carried out, the amount of re-design and re-
work required is reduced by approximately half. This
benefit is expected to be even more significant in the
future when we have more stringent and complex de-
sign requirements.

4.4. The Challenges in Datapath Auto Place-
ment
Placement is a very critical stage in the datapath lay-
out design flow as it can make or break regularity,
area, and timing specifications. If a designer starts out
with a bad placement, it is extremely difficult for the
router to make up for it.

The main difference between datapath placement and
Random Logic Synthesis (RLS) placement is the need
to maintain regularity and hierarchy. Maintaining regu-
larity in datapath placement offers several advantages.
The circuit designer can rely on the regularity to use
his intuition about critical paths. Regular layout tends

to be more dense because of the reduction in the num-
ber of jogs/bends and because the designers can spend
more time on optimizing one bit-slice. Regularity and
hierarchy in layout are also very useful in reducing ECO
time.

Timing and area constraints also tend to be much more
critical for datapath blocks than RLS blocks. Unlike
RLS blocks, datapath blocks are often made from
custom designed cells that don�t come with all the tim-
ing characterization data. This poses additional chal-
lenges for timing-driven placement algorithms.

Not all datapaths are fully regular, and they show dif-
fering amounts of irregularity, something the datapath
auto-placement algorithm must contend with.

Traditional auto placement techniques, based on math-
ematical programming (usually with a quadratic ob-
jective function) or simulated annealing, can be modi-
fied to deal with the unique requirements of datapath
placement with varying degrees of success. Techniques
based on quadratic programming tend to be faster,
but the rigid formulation makes it difficult to directly
model the regularity requirements.

V. RC Estimation
Increased use of noise sensitive dynamic circuits, lower
supply voltages, and increasing current density have
made more extensive interconnect analyses a require-
ment in the design process. Such effects must be
modeled at all stages of the design process. Estima-
tion of the effects of interconnects and device parasitics
must be accurate and consistent at all stages of the
design in order to avoid unnecessary design iterations.
Accurate parasitic estimation in the datapath design
flow depends on both the prediction of the physical
properties of the interconnects and devices (topology,
routing layers, density, device layout, etc.) and on the
accurate modeling of the parasitic effects of the de-
vices and routing.

5.1. Layout Estimation Techniques
A wide range of layout estimation techniques are in
use in design tools, ranging from wire length estima-
tion to detailed net topology estimation. Such tech-
niques are based on a set of rules, such as default
routing layers, widths, and spacing, and on net topol-
ogy generation algorithms such as a minimum span-
ning tree or Steiner tree (minimum length routing tree
with horizontal and vertical wires). Some estimates
may account for metal density or routing congestion
constraints. The accuracy of layout estimation is de-
pendent on the state of the design data. Estimated
layout based on a globally routed floorplan may be
very close to the final detailed routing, while schematic-

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 12

based estimates using little physical design data may
correspond poorly with the final design. Thus, the
quality of the estimated layout is highly dependent on
how well the datapath design tools provide an early
estimation of the physical design.

5.2. Parasitics Modeling Techniques
The modeling of process-related effects is a fairly
mature field, with a wide range of tools, models, and
techniques in use. Models range from empirical, easy
to evaluate equations [20], to computationally inten-
sive field solvers [19]. A wide range of parasitics�
modeling tools are available both commercially and
from universities. Commercially available tools pro-
vide reasonable accuracy (within 10% of field solv-
ers) on large designs, and field solver accuracy is pos-
sible on a per-net basis [21]. Most commercial tools
handle only post-layout parasitic extraction and are
suitable only for final verification of designs. Many
analysis tools and physical design tools (such as cir-
cuit analysis tools or global routers) have built-in para-
sitic estimation capability to estimate the effect of in-
terconnect parasitics, but such tools cover only a part
of the design process. The models used by these tools
may not make use of all available design data, and
inconsistency in the parasitics models used by differ-
ent tools may result in poor convergence of the design
and increased design cycle time. In addition, the built-
in estimation may not accurately model cross capaci-
tance and may not easily extend to new types of analysis
required in the design flow.

5.3. Parasitic Estimation
Our work on parasitic estimation in the datapath de-
sign process focuses on accurate, consistent parasitic
estimation at all stages of the design. The first and
perhaps most important element in the accurate esti-
mation of parasitics is the datapath design flow itself,
particularly the close interaction and sharing of design
data between the tools in the flow. The next element
is the flexibility of the parasitic estimation tool to handle
design data at all stages of completion, and the ability
to support the wide range of constraints and assump-
tions required at each stage of the design. An exten-
sive net specification system is an integral part of the
design tool suite, providing designers the ability to
specify a wide range of properties on the nets in the
design. These net specifications are used by the para-
sitic estimation capability to ensure that the parasitic
estimates accurately reflect the designer�s intentions.

The parasitic estimation capability works by using all
available design data to build a description of each of
the nets in the design as well as the environment sur-
rounding the nets. The estimator is based on a com-
mon representation of the layout and connectivity data.
Design data from various tools in the datapath design

flow are translated into this representation. Before
the final stage of the design, when the layout is com-
plete, the data for the nets will be incomplete. For
example, in the floorplanning stages, the net�s routing
topology will not be available. Using a range of as-
sumptions, the missing net data will be estimated.
These assumptions may be tuned to match a particu-
lar layout design style. A key advance over existing
parasitic estimation tools is that we are able to make
use of any real layout data that exists. Estimated lay-
out is used only when necessary to complete a net�s
representation. Since even drawn layout may not rep-
resent the final design, the estimator provides the ca-
pability to ignore any existing layout and replace it with
estimated layout.

Next, the appropriate model is used to estimate the
parasitics for each net. In our datapath design flow,
the parasitic estimation tool is able to make use of a
mix of input data sources and assumptions. We have
developed a consistent set of models of varying accu-
racy that are built into the estimation tool. These models
estimate interconnect and device resistance and ca-
pacitance, including cross capacitance. The estimator
applies the appropriate model based on the source of
the input data. The model used depends on the con-
fidence of the original design data. Higher accuracy
models are used when there is higher confidence in
the design data. For example, an estimation based on
a floorplan for a preliminary schematic need not use a
high-accuracy model since the design is likely to
change, while in the later stages of the design when
much of the layout is complete, a high-accuracy model
is needed to estimate cross capacitance between the
nets.

The flexibility provided by the parasitic estimator al-
lows the same tool to be used at all stages of the
datapath design and helps ensure consistent results of
the analyses at each stage of the design. It should be
emphasized that the effectiveness of the parasitic esti-
mator is dependent on the consistency of the results of
each of the stages of the design process in the sense
that the design at any stage provides an accurate esti-
mation of the next stage and a reasonable early esti-
mate of the final design. As shown in the other sec-
tions of this paper, this will be the case.

5.4. Results
Our initial results have shown that the parasitic esti-
mator provides superior accuracy compared to the
estimators used in existing point tools in the current
datapath design flow. The benefits of the estimator
will increase further when it is consistently used in the
complete datapath design flow.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 13

VI. Layout Cell Generation
The research in the field of cell synthesis was started
more than 15 years ago [42]. Most of this research
has focused on the generation of so-called 1-dimen-
sional (1D) layouts when transistors are arranged in a
linear fashion to minimize the number of diffusion
breaks. First approximated algorithm for this layout
style has been suggested by Uehara and VanCleemput
[42]. Maziasz and Hayes [37] presented the first op-
timal algorithm.

Unfortunately 1D layout style is suitable only for small
cells with fully complementary non-ratioed series-par-
allel CMOS circuits. Multiple attempts to extend this
style have been made to handle more complicated cir-
cuit structures [23, 24, 31, 33, 36, 39].

Analysis of manually drawn layouts shows that �two-
dimensional� (2D) layouts must be generated. Vari-
ous approaches have been taken to address this prob-
lem [26, 27, 28, 29, 30, 40, 41, 43].

Though some of these leaf-cell layout systems have
been applied successfully in ASIC flows, no commer-
cially available system today has the capabilities to
address the requirements of a custom design flow such
as microprocessor design, where layout cell design
involves a number of complex requirements. As chip
designs approach GHz frequencies, reliability verifi-
cation (RV) constraints, arising from the electro-mi-
gration and self-heat phenomenon, have also proven
to be a critical factor in the generation of leaf-cell lay-
outs.

6.1. Feature Requirements

A cell layout generation system is being looked into by
us [44]. The system has to enable automated layout
generation to produce cells that are optimized for vari-
ous constraints such as density, performance, RV, and
power. Its goal is to increase cell design productivity.

The system should include the following features:

• Ability to handle several hundred devices with
various types of top-down constraints such as pre-
routes, keep-out regions, pin/port preferred loca-
tions, etc.

• Easy configuration for various design domains
(standard cell libraries, datapath bit-cells and bit-
slice synthesis, custom cell design, etc.) and dif-
ferent circuit design methodology. Users should

be able to define their own cell architecture rules.

• True 2D placement with RV constraints that al-
lows simultaneous placement of cell instances and
devices.

• Automatic stack and/or device-based legging with
optional user control.

• Incremental area routing.

• Incremental compaction with different types of
gridding constraints.

• Link with schematic editor.

• Powerful ECO mode / family generation / pro-
cess migration capabilities.

• On-line RV estimation, DRC, and OpenChecker.

• Integrated with a layout editing system to allow
manual intervention at any stage, ranging from
push-button mode (fully automatic) to an interac-
tive mode with unlimited manual intervention.

6.2. System Overview

In order to implement this layout generation system,
five main components are required: a placer, a router,
an RV analyzer, a compactor, and a family generator
and change manager. A layout generation flow can be
built around these five components (Figure 8). This
flow can either be fully automated, or it can be guided
and enhanced by a layout designer wherever required.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 14

Figure 8: Layout synthesis flow

6.2.1. Placer

In the generation of a layout for any schematic, a large
amount of effort is spent in transferring the netlist to
the layout editor, ordering the devices, and then de-
termining the best placement for those devices. The
placer has to handle a capacity for several hundred
devices and be able to do two-dimensional device
placement. It should also have provisions for top-
down constraints, RV constraints, and an incremental
placement capability.

6.2.2. Router

Once the devices have been placed, the connections
between them have to be made. These are done by
the routing module. Manual pre-routing of critical nets
is allowed, and often encouraged, to meet strict timing

or port location guidelines. The router interacts with
the RV estimator to deduce the optimal routing shapes
for critical nets based on given RV constraints. Once
the optimal routing topologies have been determined,
the actual routing itself is done by a detailed router.
To improve routing quality, the router module refines
the placement based on congestion analysis.

6.2.3. RV Analyzer

At different stages of the work flow, RV estimations
are required to produce layouts that are optimized for
reliability constraints. The RV estimator is based on
worst-case current analysis through static modeling of
current switching. It has a built-in current-solving en-
gine that traverses through nets to compute worst-case
interconnect currents from the switching of the device
stacks. Based on the results of the analysis, the mod-
ule identifies objects that are electro-migration and self-
heat limited. The RV analysis can potentially lead to a
re-ordering of devices, a change in routing topology,
or a change in wire and via geometries.

6.2.4. Compactor

This is used to compact the area and resolve design
rule violations, as well as for putting pins on grid for
supporting the routing flow at the next level of design
hierarchy. It can be configured by a wide range of
options to support a specific working flow.

6.2.5. Family Generator and Change Manager

While generating cell libraries, several cells of similar
topologies need to be created, the differences usually
being ones of device sizing, with minor changes in
schematic, legging, etc. The same situation is also en-
countered if the schematics are revised after the lay-
out has been done. Since such changes don�t modify
the fundamental layout topology, we can generate sub-
sequent cells from a starting prototype or template.
This is done by creating a mapping between the netlists
of the template and the desired cell, followed by re-
sizing, and adding or deleting devices or legs as nec-
essary. Using the family generation module, the layout
designer only has to lay out a couple of representative
cells of a cell family. The layouts for all the other mem-
bers of the same cell family are then generated auto-
matically. This feature can also be used for process
migration.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 15

Each of the above steps are independent of each other:
for example, the devices may be manually placed and
then automatically routed, or, cells drawn manually may
be used as templates for family generation, and so on.
This ensures improved layout design productivity with-
out compromising the layout quality.

6.3. Results
Initial usage of a prototype version of the cell genera-
tion system at Intel Corporation shows significant pro-
ductivity improvement over manual design for various
kinds of cells, while meeting all layout quality require-
ments such as density, reliability, power, and timing.

VII. Future Challenges
It is expected that with continuous process technol-
ogy advancement and the growing need for higher
performance chips, the problems in datapath design
will continue to increase and become more complex.
Granted, not all problems are known or understood
at this time. There are a number of problems that we
are dealing with currently, which will get much worse
in the future. They are as follows:

• Handling of coupling noise problems (prima-
rily due to capacitive coupling). A substantial
amount of effort is currently required to verify and
correct the design to ensure correct silicon be-
havior. Techniques to generate correct-by-con-
struction noise problem-free circuit and layout are
essential.

• Timing analysis to include effects of noise
(power noise, capacitive coupling, and induc-
tive coupling). Guard banding (in timing analysis
cycle time or interconnect capacitance) is often
used to account for the effect of noise. However
over-conservatism would result if the guard band-
ing is done for the worst-case scenario. If some
statistical averages are used in guard banding, there
might be serious escapes, which can cause prob-
lems in silicon. Hence, it is necessary to have the
ability to include the effects of noise accurately in
timing analysis.

• New circuit techniques. Traditional static CMOS
and domino logic circuits have worked well so
far. However, with the continuous decrease in
power supply voltage and the increased demand
in chip performance, new circuit design styles have
to be investigated to achieve a better delay-power
product and to meet other design requirements.

VIII. Conclusion
In this paper, we have presented the challenges in
datapath design and our ideas to meet these challenges

through datapath logic synthesis, layout planning, in-
terconnect RC estimation, and layout cell generation.
We believe that datapath design requires substantially
more automation to be able to meet future require-
ments: �system on a chip� and demand for higher per-
formance and deep sub-micron geometries. We hope
that this paper stimulates more interest in both aca-
demic and commercial CAD arenas to tackle the prob-
lems in high-performance datapath design.

Acknowledgments
We thank Nagbhushan Veerapaneni who contributed
to the paper in the area of auto placement. We also
thank Marian Lacey, Mysore Sriram, Bharat Bhushan,
and Lin Chao who reviewed this paper and gave valu-
able feedback.

References
[1] D.E. Hoffman, �Deep Submicron Design Tech-
niques for the 500MHz IBM S/390 G5 Custom
Microprocessor,� Proc. of ICCD 1998.

[2] S. Posluszny, �Design Methdology for a 1.0
GHz Microprocessor,� Proc. of ICCD 1998.

[3] S. R. Arikati and R. Varadarajan, �A signature
based approach to regularity extraction,� Proc. of
ICCAD, November 1997, pp. 542-545.

[4] M. Hirsch and D. Siewiorek, �Automatically
extracting structures from a logical design,� Proc. of
ICCAD, November 1988, pp. 456-459.

[5] G. de Micheli, Synthesis and Optimization of
Digital Circuits, McGraw Hill, New York, 1990.

[6] E. Detjens, et al., �Technology mapping in
MIS,� Proc. of ICCAD, November, 1987, pp.
116-119.

[7] K. Keutzer, Dagon, �Technology binding and
local optimization by DAG matching,� Proc. of
DAC, June 1987.

[8] M. R.Corazao, et al., �Performance optimiza-
tion using template matching for datapath-intensive
high-level synthesis,� IEEE Trans. on CAD, 15(8),
August 1996, pp. 877-887.

[9] G. Odawara, et al., �Partitioning and placement
technique for CMOS gate arrays,� IEEE Trans. on
CAD, May 1987, pp. 355-363.

[10] R.X.T. Nijseen, and C. A. J. van Eijk, �Regular
layout generation of logically optimized datapaths,�
Proc. of ISPD, 1997, pp. 42-47.

[11] J. M. Rabaey, et al,. �Fast prototyping of
datapath-intensive architectures,� IEEE Design and
Test of Computers, June 1991, pp. 40-51.

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 16

[12] D. S. Rao and F. J. Kurdahi, �On clustering for
maximal regularity extraction,� IEEE Trans. on
CAD, 12(8), August 1993, pp. 1198-1208.

[13] A. Chowdhary, et al., �A general approach for
regularity extraction in datapath circuits,� Proc. of
ICCAD, November 1998, pp. 332-339.

[14] A. Chowdhary, et al., �Extraction of functional
regularity in datapath circuits,� IEEE Trans. on
CAD, submitted November 1998.

[15] A. Chowdhary, et al., �A systematic approach
for regularity extraction,� U.S. Patent, filed Novem-
ber 7, 1998.

[16] B. Krishna, C.Y.R. Chen, and N. Sehgal,
�Technique for Planning of Terminal locations of
Leaf Cells in Cell-Based Design,� Proc. 11th Inter-
national Conference On VLSI Design, pp. 53-58,
1998.

[17] Amnon Baron Cohen, Michael Shechory,
�Track Assignment in the Pathway Datapath Layout
Assembler,� Digest of Technical Papers 1991
IEEE International Conference on Computer-
Aided Design, pp. 102-105, 1991.

[18] J. Cohn, L. Pillage, and I. Young, �Tutorial 4:
Digital Circuit Interconnect: Issues, Models, Analy-
sis, and Design,� IEEE/ACM International Con-
ference on CAD-94.

[19] J. R. Phillips and J. White, �A Precorrected-
FFT Method for Capacitance Extraction of Compli-
cated 3-D Structures,� Proc. ICCAD-94, pp. 268-
271.

[20] N. Delorme, M. Belleville, and J. Chilo,
�Inductance and Capacitance Analysis Formulas for
VLSI Interconnects,� Electronics Letters, vol. 32,
no. 11, May 1996.

[21] Y.L. Le Coz , R.B. Iverson, H.J. Greub, P.M.
Campbell, and J.F. McDonald, �Application of a
Floating-Random-Walk Algorithm for Extracting
Capacitances in a Realistic HBT Fast-Risc RAM
Cell,� Proc. 11th International VLSI Multilevel
Interconnection Conference, Santa Clara, CA, pp.
342-4, June 1994.

[22] D.G. Baltus and J.Allen, �SOLO: A generator
of efficient layouts from optimized MOS circuit
schematics,� Proc. 25th ACM/IEEE Design Auto-
mation Conferenec, pp. 445-452, June 1988.

[23] B.Basaran, �Optimal Diffusion Sharing in
Digital and Analog CMOS Layout,� Ph.D. Disserta-
tion, Carnegie Mellon University, CMU Report No.
CMUCAD-97-21, May 1997.

[24] J.Burns and J.Feldman, �C5M: A Control
Logic Layout Synthesis System for High-Perfor-

mance Microprocessors,� Proc. ISPD�97, pp. 110-
115.

[25] C.C.Chen and S.L.Chow, �The layout synthe-
sizer: An automatic netlist-to-layout system,� Proc.
26th ACM/IEEE Design Automation Conference,
pp. 232-238, June 1989.

[26] S.Chow, H.Chang, J.Lam, and Y.Liao, �The
Layout Synthesizer: An Automatic Block Generation
System,� Proc. CICC 1992, pp. 11.1.1-11.1.4.

[27] J.Cohn, D.Garrod, R.Rutenba, and L.R.Carley,
Analog Device-Level Layout Automation, Kluwer
Academic Publishers, Boston MA, 1994.

[28] M.Fukui, N.Shinomiya, and T.Akino, �A New
Layout Synthesis for Leaf Cell Design,� Proc. 1995
ASP-DAC, pp. 259-263.

[29] A.Gupta and J.Hayes, �Width Minimization of
Two-Dimensional CMOS Cells Using Integer Linear
Programming,� Proc. ICCAD 1996, pp.660-667.

[30] A.Gupta and J.Hayes, �CLIP: An Optimizing
Layout Generator for Two-Dimensional CMOS
Cells,� Proc. 34th DAC 1997, pp.452-4557.

[31] A. Gupta and J. Hayes, �Optimal 2-D Cell
Layout with Integrated Transistor Folding,� Proc.
ICCAD 1998, pp.128-135.

[32] M. Guruswamy, R. Maziasz, D. Dulitz, S.
Raman, V. Chiluvuri, A. Fernandez, and L. Jones
�CELLERITY: A Fully Automatic Layout Synthesis
System for Standard Cell Libraries,� Proc DAC�97,
pp. 327-332.

[33] Y-C. Hsieh, C-Y. Hwang, Y-L. Lin, and Y-C.
Hsu, �LiB: A CMOS cell compiler,� IEEE Transac-
tions on Computer Aided Design, Vol. 10, pp.
994-1005, August 1991.

[34] Chi Yi Hwang, Yung-Ching Hsieh, Youn-Long
Lin, and Yu-Chin Hsu, �An Efficient Layout Style for
Two-Metal CMOS Leaf Cells and its Automatic
Synthesis,� IEEE Transactions on Computer
Aided Design, Vol. 12, pp. 410-423, March 1993.

[35] M. Lefebvre, C. Chan, and G. Martin, �Tran-
sistor placement and interconnect algorithms for leaf
cell synthesis,� EDAC-90, pp. 119-123, 1990.

[36] M. Lefebvre and D. Scoll, �PicasoII: A CMOS
Leaf Cell Synthesis System,� Proc. 1992 MCNC
Intl. Workshop on Layout Synthesis, Vol. 2, pp.
207-219.

[37] R.Maziasz and J.Hayes, �Layout Minimiza-
tion of CMOS Cells,� Kluwer Academic Publish-
ers, Boston, 1992.

[38] C.L. Ong, J.T. Li and C.Y. Lo, �GENAC: An
automatic cell synthesis tool,� Proc. 26th ACM/

Intel Technology Journal Q1�99

Challenges of CAD Development for Datapath Design 17

IEEE Design Automation Conference, pp. 239-
244, June 1989.

[39] C.Poirier, �Excellerator: Custom CMOS Leaf
Cell Layout Generation, � IEEE Trans. on CAD,
8(7), July 1989, pp. 744-755.

[40] S. Saika, M. Fukui, N. Shinomiya, and T.
Akino, �A Two-Dimensional Transistor Placement
Algorithm for Cell Synthesis and its Application to
Standard Cells,� IEICE Trans. Fund., E80-A(10),
Oct.1997, pp. 1883-1891.

[41] K. Tani, K. Izumi, M. Kashimura, T. Matsuda,
and T. Fujii, �Two-Dimensional Layout Synthesis for
Large-Scale CMOS Circuits,� Proc ICCAD 1992,
pp.490-493.

[42] T. Uehara and W.M. VanCleemput, �Optimal
Layout of CMOS Functional Arrays,� IEEE
Transactions on Computers, C-30(5), May 1981,
pp. 305-312.

[43] H. Xia, M. Lefebvre, and D. Vinke, �Optimiza-
tion-Based Placement Algorithm for BiCMOS Leaf
Cell Generation,� IEEE J.Solid State Circ., 29(10),
October 1994, pp. 1227-1237.

[44] B.Basaran, K.Ganesh, A.Levin, R.Lau,
M.McCoo, S.Rangarajan, and N.Sehgal, �GeneSys
- A Layout Synthesis System for GHz VLSI De-
signs,� Proc. 12th International Conference on VLSI
Design, January 1999, pp. 458-452.

Authors� Biographies

Tim Chan is currently a CAD tool system architect at
Intel. He received his B.Sc. and M. Phil. in electrical
engineering from the University of Hong Kong in 1980
and 1984 respectively. He joined Intel in 1990 as a
senior VLSI designer. His technical interests include
high-speed circuit design, microprocessor design meth-
odology, and logic synthesis. His e-mail is
tim.w.chan@intel.com.

Amit Chowdhary is a senior CAD engineer at Intel.
He received his Ph.D. in computer science and engi-
neering from the University of Michigan, Ann Arbor in
1997. He joined Intel in 1997 and is working on the
datapath automation project in Design Technology
(Microprocessors Products Group). His technical in-
terests include high-level and logic synthesis, technol-
ogy mapping, and timing analysis. His e-mail is
amit.chowdhary@intel.com.

Bharat Krishna is a senior CAD engineer in the Mi-
croprocessors Product Group at Intel. He received

an M.S. in computer engineering from Syracuse Uni-
versity in 1994 and a B.Sc. in electrical engineering
from the University of Khartoum, Sudan in 1991. He
has been working in Intel since 1995, and he is the
project leader for the layout planner tool. His inter-
ests include datapath layout automation and VLSI rout-
ing. His e-mail is bharat.krishna@intel.com.

Artour Levin is a staff CAD engineer at Intel. He re-
ceived his MS in Math from Belarus State University
in 1986 and Ph.D. in Computer Science from the same
University in 1990. He joined Intel in 1995 and is
working on CAD tool and methodology development
in the Microprocessors Product Group. His interests
include discrete mathematics, combinatorial optimiza-
tion, CAD algorithms and design methodology.
His e-mail address is alevin@scdt.intel.com.

Gary Meeker Jr. is a senior CAD engineer at Intel.
He received his BSEE from Carnegie Mellon Univer-
sity in 1990 and his MSEE from UC Berkeley in 1994.
He joined Intel in 1994 and is working on CAD tool
and methodology development in the Microproces-
sors Product Group. His interests include parasitic
extraction and estimation tools, algorithms, and mod-
els. His e-mail is gmeeker@scdt.intel.com.

Naresh Sehgal is currently managing the Datapath Tool
Development Group for next-generation processor
design at Intel. He received his B.S. in EE from Punjab
Engineering College in India, followed by an M.S. and
Ph.D. in computer engineering from Syracuse Univer-
sity, NY. Naresh has been with Intel since 1988, and
his research interests include CAD algorithms and
design methodology. His e-mail is
naresh.sehgal@intel.com.

