

Organic Flip Chip Packages for Use in Military and Aerospace Applications

David Alcoe, Kim Blackwell and Irving Memis, Endicott NY

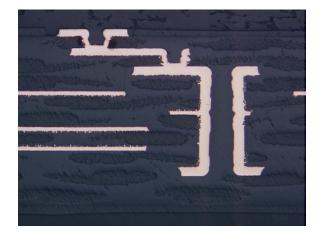
Contents

- 1. Bridge from Commercial Reliability
- 2. Existing PBGA use in Aerospace & Military
- 3. Drivers: Plastic versus Ceramic Package Weight
- 4. Attributes of PTFE and Thin Core FC Packages
- 5. Flip Chip Package Reliability
- 6. Flip Chip Package Wireability
- 7. Flip Chip Package Outgassing
- 8. Flip Chip Package Performance after Radiation Exposure
- 9. Conclusions
- 10. Acknowledgements

2

Reliability needs of High End Commercial Products

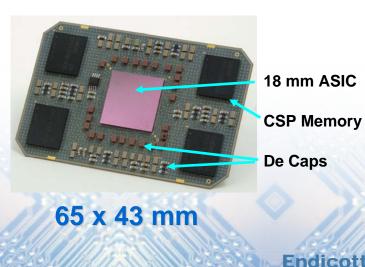
- Server & Telecom (Servers, Routers, Hubs & High Speed Switches)
 - High reliability requirements
 - Minimum 10 years life
 - Component on PCB stressing from 0 to 100C and 3,600 cycles to first failure
 - Component only stressing from -55 to +125C and 1000 cycles to first failure
 - High power requirements, 50 to 100 watts are common
 - High signal densities, > 1700 signals in a 52.5mm BGA
 - High electrical performance, 12.5 GB/s
 - Companies in these markets are building equipment for satellite applications
 - Stringent Shock and Vibration requirements
- High End Commercial Applications have driven development of technologies that can bridge to Military / Aerospace


Wire Bond Packaging: Aerospace

- Aerospace : <u>1st plastic BGA for Satellite</u>
 - ► Chip Up
 - ► > 700 BGA I/O, 42.5mm body
 - ► > 300 signals
 - ► 2 signal, 4 layer Cavity PBGA
 - ► 75 micron lw/ls
 - ► 16.6mm die
 - ► Commercial Overmold

Wirebond Build Up Package: Military

- 35mm WB CU PBGA
 - 2-6-2 X Section (10 layer), 7 Signals, 3 Pwr/Gnd
 - 37.5mm body size
 - 864 micron total thickness
 - 69 micron thick top BU layer thickness
 - 75 micron lw, 53 micron ls
 - BU vias are 100 micron CO₂ laser drilled
 - 250 micron pads in outer most BU layers
 - 300 micron (12mil) pads on Inner BU layers
 - Stacked BU vias
 - Core vias are 200 micron dia. mechanical drilled on 400 micron pads
- Can be either <u>WB or FC, SIP or SC</u>
- Glass reinforced Polyimide Nelco 7000 2HT
 - Er: 4.26 @ 1 to 2.5GHz (50% resin content)
 - Dielectric Loss: .009 @ 1GHz (50% resin content)
 - Tg: >250C


Endicot

PTFE Based Flip Chip SiP's: Military

- System in Package (ASIC / CSP memory and decaps)
 - ✓ Server Processor Packages:
 - > 18 mm die size
 - > 2 signal layers, 280 signals
 - ➤ 250 micron die pad pitch
 - CSP memory
 - Top and bottom decaps
 - > 630 I/O SMT PGA connector

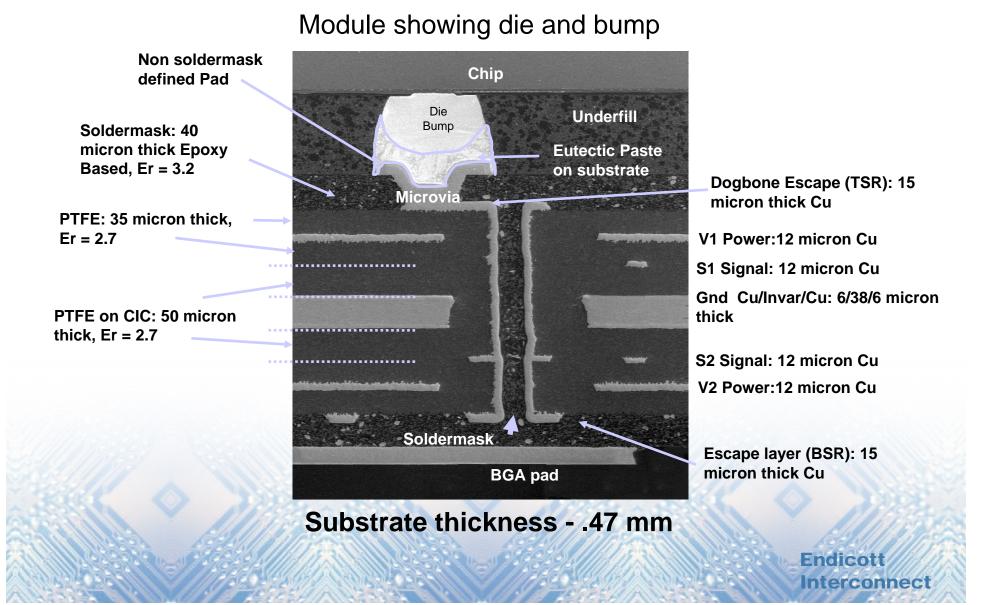
Interconnec

Weight Comparisons for Plastic vs Ceramic 40mm body size

Substrate	Approximate substrate weight (gm)
Ceramic (30 layer, alumina, 10mil/layer)	48.0
Ceramic (15 layer, alumina, 10 mil/layer)	24.0
PTFE BGA 9 layer substrate	2.3
Thin core build up 10 layer substrate	2.9
Thin core build up 6 layer substrate	2.0

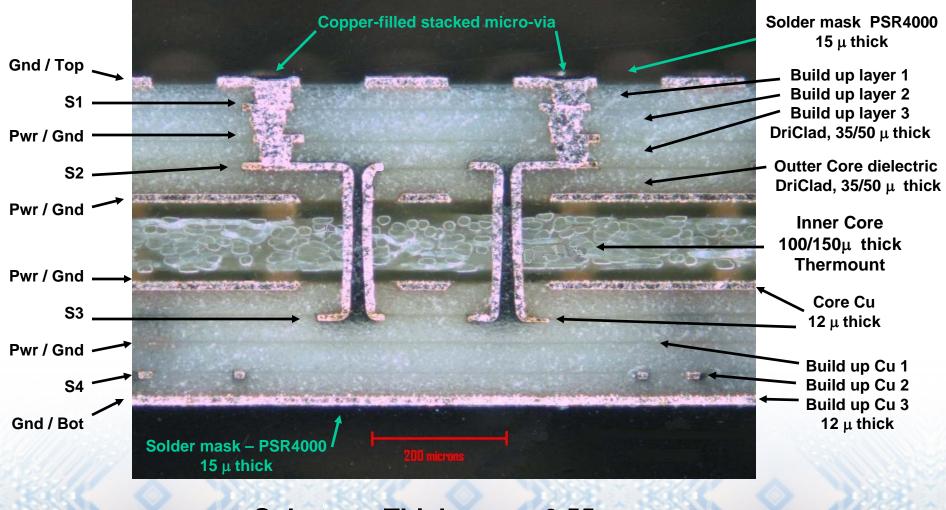
Endicott Interconnect

High End Telecom and Server Applications using Flip Chip Plastic


- Drivers are similar to Military/Aerospace
 - Package shrink is critical, weight not as large a concern
 - High speed signals with low noise
 - Clean eye's at 12.5 Gb/s in production
 - 600 differential pairs are common
 - High BGA/LGA/PGA I/O with min. 10 yr field life
 - 52.5 mm, 2577 BGA I/O, 1 mm BGA pitch in high frequency routers
 - 90nm Si technology
 - 25 micron lw/ls
 - 200 micron Flip Chip die pad pitch, 16 rows deep
 - Low volume applications, some need to remain on shore

Highlights of Advanced Plastic Flip Chip Packaging

- 50 micron UV laser drilled vias
 - Fine pitch (less than 200 micron), for full access to wiring planes
- 12 micron thick Copper Conductors
 - 25 micron Line Width
- Thin Core and Coreless Technologies
- Thin Substrates (0.4 to 0.6 mm thick)
- Build up dielectric layer thickness available 35 to 50 microns
- Low-stress PTFE and Particle Filled Epoxy Dielectrics
 - Low-k dielectrics: High Frequency, Low-Noise applications
 - Er = 2.7 for PTFE, Er = 3.7 for thin-core buildup
- Solder Bumped Copper Die Pads

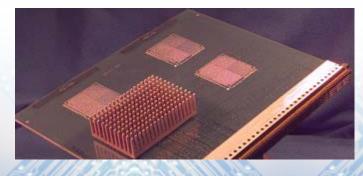


Overview: Typical PTFE 9 layer Cross Section - HyperBGA®

Overview: Typical Thin Core 10 layer Cross Section - CoreEZ®

Substrate Thickness – 0.55 mm

Endicott Interconnect



Typical PTFE Package Reliability Performance

TEST	FORMAT	DURATION	RESULT
Preconditioning - JEDEC Level 3	Component	96H	N/A
Thermal Cycle (0/100'C)	Card	3600 Cycles	pass
Power Cycling (25/125'C)	Card	3600 Cycles	pass
DeepThermal Cycling (-55/+125C)	Component	1000 Cycles	pass
Wet Thermal Shock (-40 / +125 C)	Component	100 Cycles	pass
T. H. & B. (85 'C / 85%RH/3.7 V)	Card	1000 Hours	pass
HAST (110 'C / 85%RH/3.7V)	Card	264 Hours	pass
Pressure Pot (121 'C / 100% RH/2atm)	Component	96 Hours	pass
High Temp. Storage (150 'C)	Component	1000 Hours	pass
Low Temp. Storage (-65'C)	Component	1000 Hours	pass
Shock/Vibration JEDEC	Component	various	pass

Component level testing is die assembled to substrate with underfill, lid and BGA balls, card level testing is component assembled to PCB

Module w/ HS on 9x10 inch card

Endicott

Interconnec

0 to 100°C Accelerated Thermal Cycle Reliability Component Attached to PCB

Failure Mode	Ceramic BGA ATC Life (cycles)	PTFE BGA ATC Life (cycles)	Thin Core Build Up ATC Life (cycles)
Package Internal	>10,000	>10,000	>5000
Flip Chip Joint	>10,000	>10,000	>5000
BGA Corner Joint	800 to 2,000	> 10,000	>5000
BGA Chip Edge Joint	>10,000	>10,000	5000; extendable to 10,000 with optimized design

•Includes Precondition Stress as JEDEC-020C Moisture Resistance level 4 with 3x Reflows

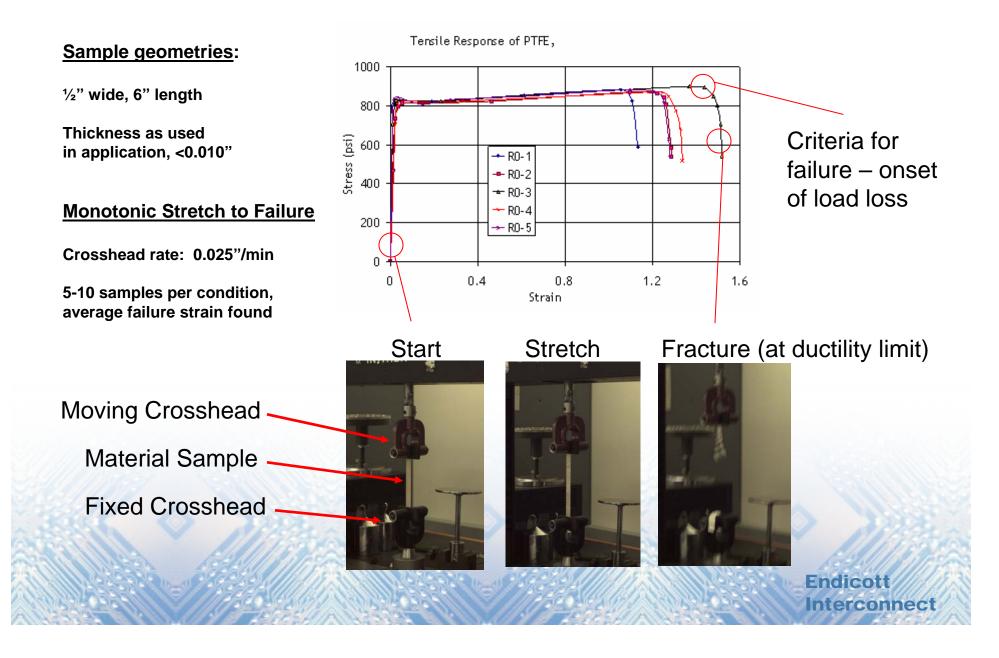
•Package size 42-52mm; Both PTFE and Thin Core exceed ceramic package reliability

Flip Chip Package Wireability Comparison

Substrate	# of Signal layers	Signal Wiring Escapes per mm of die edge per layer
Ceramic, 30 layers	12	2.7
PTFE BGA, 9 layers	2	4.4
Thin Core Build Up 6 layers	2	5.9
Thin Core Build Up 10 layers	4	7.0

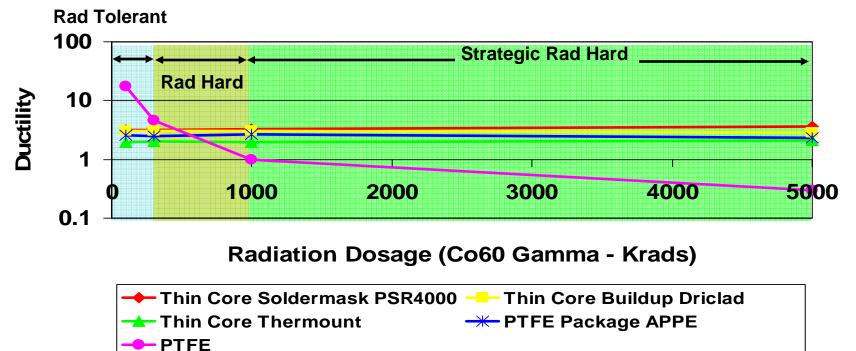
Organic Flip Chip Package Outgassing Performance

- Materials
 - Rogers 2800 PTFE
 - Asahi APPE
 - Driclad Epoxy
 - Thermount 55LM
 - PSR4000
- Maximum of 1.0% Total Mass Loss
 - All materials & finished substrates < 1.0%</p>
- Maximum 0.1% Collected Volatile Condensable Materials
 - All materials & finished substrates < 0.1%</p>


Evaluation of Materials Subjected to Various Radiation Levels

• Evaluated PTFE BGA (HyperBGA[®]) and Thin Core (CoreEZ[®]) materials radiation response

- Radiation Exposure: Co60 Gamma:
 - Control
 - 32, 50, 100, 300, 500, 700, 1000 and 5000 krad TID
- PTFE Materials evaluated: Rogers 2800, Asahi APPE
 - Results: Many applications will be unaffected by radiation
 - APPE has no measurable degradation to 5 Mrad
 - R2800 shows gradual loss of ductility with exposure
- Thin Core Build Up Materials Considered: Thermount 55LM, Particle Filled Driclad Epoxy, PSR4000
 - Results: No measurable change of mechanical properties through 5
 Mrad



Material Ductility Test with tensile stretch of film sample – PTFE example

Material Degradation

✓Ductility performance indicates package performance in thermal cycling

- >Thin Core Build Up appears to be a good choice for Rad Hard and Strategic apps.
 - •materials show no ductility degradation with radiation level
- PTFE appears to be best suited for Rad Tolerant applications
 - •PTFE ductility is higher then all other materials below 300K rad exposure

Endicott

Interconnect

•PTFE predictably degrades significantly above 300Krad exposure levels

Conclusions

- Flip Chip PBGA Packages are Suitable for Military / Aerospace Applications
 - Reliability
 - Wireability
 - Outgassing
 - Radiation Exposure
- Significant Weight Savings Realized with PBGA Packages
- Advantage to Overall Life Costs and Performance

Acknowledgements

For controlled material radiation exposure, outgassing, sample design and analysis, and helpful review / comments

- Honeywell: Ron Jensen & Dave Scheid
- BAE: Tom Cronauer, Keith Sturcken, Paul Nixon, Colin Dublin
- NG-ST: Mary Massey
- EIT: Louis Matienzo & Todd Davies