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Abstract
Failure analysis (FA) is one of the key competencies in
Intel. It enables very rapid achievement of world class
manufacturing standards, resulting in excellent
microprocessor time-to-market performance. This paper
discusses the evolution of FA techniques from one
generation of microprocessors to another.

According to Moore’s law, transistor count doubles as
transistor dimensions are reduced in half every 18 months,
allowing for more complex microprocessor architecture
designs. For example the Intel486DX™ microprocessor
had 1.2 million transistors while the Pentium®
microprocessor contains 3.1 million transistors. With
rapid technological advances such as more complex
microprocessor architecture, an increasing number of
interconnect layers, and flip-chip packaging technology
for products like the Pentium® and Pentium® II
microprocessors, conventional FA techniques, in use since
the Intel386DX™ processor generation, are no longer
effective. These conventional techniques require in-depth
knowledge of the processor’s architecture, and they
involve exhaustive e-beam probing work, which typically
results in very long FA throughput times. Other traditional
defect localization techniques, such as emission
microscopy from the frontside of the die, are also
becoming less successful due to the increased number of
metal interconnect layers that obscure local circuitry.

This paper provides insight into FA techniques that have
been adopted at Intel. It discusses the evolution of
software fault isolation techniques based on Design For
Testability (DFT) features, and other special FA
techniques. In this paper, we will discuss these techniques
and show how they are effectively used to produce fast FA
support turnaround for both silicon debug and

manufacturing. We will also review their technical merits
and return on investment, as well as the cost of each
technique to Intel. The main focus of this paper is
electrical fault isolation techniques, as opposed to physical
defect localization techniques such as liquid crystal
analysis and emission microscopy.

In the context of this paper, Fault Localization and Fault
Isolation (FI) are synonymous. These are defined as the
task of electrically isolating the location of a defect in
logical space. Another approach, termed Defect
Localization, refers to the task of isolating the location of
a defect in physical space.

Introduction
Failure analysis plays a very important role in the
semiconductor industry in enabling timely product time-
to-market and world-class manufacturing standards
(greater than 95% manufacturing yields, lower than 100
defects per million, or DPM). At Intel, the situation is
even more compelling: quick failure analysis turnaround is
necessary to support Intel’s steep product ramp and high-
volume manufacturing, where annual microprocessor
production volume is in the range of tens of millions of
units.

However, the increasing complexity of microprocessors in
the form of more complex architecture designs, shrinking
transistor feature sizes, and new packaging technologies
have significantly increased the failure analysis challenges
on Intel’s Pentium and Pentium Pro family of
microprocessors. A roadmap recently published by the
Semiconductor Industry Association (SIA) predicts that
by the year 2000, microprocessor transistor counts will
exceed 21 million transistors. The same industry roadmap
also predicts that by that time, microprocessors will utilize
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full flip-chip technology, instead of current wirebond
assembly and packaging technology. Traditional fault
isolation techniques using intensive e-beam probing and
assembly code minimization as well as die frontside defect
localization with liquid crystals or emission microscopy
are no longer sufficient even for today’s complex
microprocessors like the Pentium and Pentium Pro
microprocessors.

Newer FA techniques based on design-for-testability
(DFT) and design-for-failure-analysis (DFFA) features
have proven to be highly successful for the Pentium and
Pentium Pro microprocessors, as evidenced by high
analysis success rates (>90%) and short analysis
throughput time. Without these new FA techniques that
pinpoint the exact failing location, detection of sub-
micron defects such as silicon dislocation, as shown in
Figure 1 below, is very difficult if not impossible.

Figure 1: A TEM micrograph of silicon dislocation

This paper provides insight into the various FA techniques
based on the DFT and DFFA features that have been
successfully developed for the Pentium and Pentium Pro
microprocessors. Two other advanced FA techniques and
tools will also be discussed. These two techniques are the
low-cost personal computer (PC) system-level tester
solution and the processor cartridge-level (SECC) FA
technique.

Failure Analysis Overview
Figure 2 illustrates a typical FA flow used at Intel. The
first step is to verify the failure on a functional tester in the
failure analysis lab to ensure that the failure’s electrical
signature observed on the production tester can be
duplicated on the lab’s functional tester. Fault localization
or defect localization is the next step. Its function is to
narrow down the fault to a small block of circuitry. In this
case, a small block of circuitry could just be a via, a
transistor, a gate, or even a functional unit block (FUB).
Reverse engineering, or physical FA as it is better known,
is the next step. Individual interconnect layers are
selectively removed either mechanically or chemically and
examined for defects. Occasionally, defect
characterization is introduced to gain more insight into the
defect’s behavior over time and under stress. This is
crucial in order to develop the best possible defect screen

to maintain a high quality product. A case is considered
closed when a root cause is determined and corrective
action is put in place. A corrective action could be a minor
change such as the addition of new test screens, or it could
also involve major re-engineering via process and design
fixes.

Failure Verification

Fault Isolation & Defect
Localization

Physical FA/Defect
Characterization

Root Cause Determination

Corrective action

Figure 2: A typical failure analysis flow

From the flow in Figure 2, it is clear that the key to
determining the overall FA success rate actually lies in the
fault localization and defect localization steps. These steps
provide the spatial information on where the defect is, and
they control the rest of the steps.

Fault Localization
As the name implies, fault localization is the technique of
localizing a fault in a failing circuit functionally and
logically. Traditionally, this is a two-step process that
involves coarse-level isolation using assembly code
minimization followed by fine-level isolation using e-
beam probing. With increasing device architecture
complexity, coarse-level isolation using assembly code
minimization becomes very time consuming and
ineffective. Figure 3 below depicts the evolution of the
two-step fault localization flows for different generations
of Intel’s microprocessors.

DFT and DFFA features built into newer microprocessors
to accelerate the silicon debug and production testing
processes can also be employed as coarse-level fault-
localization tools. The use of DFT and DFFA features as
FA tools in conjunction with e-beam probing is proven to
be very successful on the Intel486DX and Pentium
processors where the internal signals of interest are still
accessible for e-beam probing. However, the increasing
number of interconnect layers (Intel’s Pentium® 90/100
MHz processor has four metal layers, and the Pentium® II
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333 MHz processor has five metal layers) and changed
packaging technologies from frontside wirebond
technology to full flip-chip technology makes the e-beam
probing process even more challenging. The use of
Register Transfer Level (RTL) simulation as a fine-level
isolation tool addresses this challenge.

Figure 3: An overview of various fault-isolation
approaches for the Intel386DX™ processor (top left), the
Intel486DX™ and Pentium® processors (top right), and
the Pentium® Pro and Pentium II® processors (bottom)

DFT-Based Fault Isolation Techniques
The following sections elaborate on the new fault
localization techniques adopted from DFT features
currently available on the Pentium and Pentium Pro
microprocessors.

Micropatching
Microcodes are integrated instructions that dictate the
processor’s internal operation. In traditional architecture
design, access to built-in microcodes is restricted.
However, an ability to create new microcodes and control
their flow would be very useful for fault isolation. With
such a tool, the failure analyst would be able to create
customized microcode subroutines and control microcode
flow. This capability is now realized on the Pentium Pro
microprocessor family through the introduction of the
Micropatching DFT feature. This capability has caused
significant breakthroughs in debugging processors with
microcode failures. For example, with micropatching, it is
now possible to systematically perform fault isolation on

failures in the processor’s reset subroutine, which is
implemented in microcode.

The Micropatching DFT feature consists of two key
elements: the microcode patch RAM and several pairs of
Match and Destination registers. The microcode patch
RAM stores externally programmed microcodes. (From
here on, programmed microcodes that reside in the
microcode RAM will be called external microcodes and
built-in microcodes that reside in the microcode ROM will
be called internal microcodes.)

The Match and Destination registers are used for
controlling the microcode flow. Whenever a microcode
address in Microcode Instruction Pointer (UIP) matches
the content of a Match register, the UIP will be reloaded
with a new address from the Destination register.

In order to control the microcode flow, the Match
registers are loaded with the UIP that the user intends to
jump from. Similarly, the Destination register must be set
to the UIP that the user wishes to jump to.

Besides its usefulness in electrical fault isolation, the
Micropatching FA tool can also be used in conjunction
with liquid crystal analysis and emission microscopy.
Without Micropatching, the processor  may need to
execute many other instructions in the test pattern
completely unrelated to the failure before reaching the
instruction that causes the failure. By then, the CPU would
have generated a lot of heat and made the liquid crystal
analysis less sensitive to the heat generated by the failing
instruction (i.e., the heat generated by the defective
circuitry). With Micropatching, the UIP for the reset
subroutine can be set in the Match register to point to the
failing UIP, thereby bypassing the reset subroutine
altogether. This minimizes the generation of surrounding
heat that could result in genuine hot spots, caused by the
defect, to be hidden.

Array Dump
Memory arrays are important elements in a processor.
Memory arrays are usually used for storing data, control
signals, processor status, etc. Visibility into these arrays
helps a failure analyst understand the internal operation of
the device thereby speeding up the fault isolation process
and reducing e-beam probing time. It is almost impossible
to analyze a dynamic execution machine such as the
Pentium Pro processor without knowing the contents of
the arrays. With the Array Dump tool, the contents of
many important arrays can be dumped out to produce
snapshots of the arrays at any core clock. In order to save
data analysis time and avoid human error, a post-
processing program was developed to compare the
acquired data with that from RTL simulation. Mismatches
are automatically highlighted.

Coarse-level FI:
assembly code
minimization

Fine-level FI:
e-beam probing

Coarse-level FI:
DFT based fault

localization

Fine-level FI:
e-beam probing

Coarse-level FI:
DFT based fault

localization

Fine Level FI:
RTL simulation
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The Array Dump FA tool is developed by applying two
new DFT features in the Pentium Pro processor family.
The first DFT feature, called Micro Breakpoint, is one of
the built-in debug trigger-response mechanisms that
allows the processor to execute certain tasks in response
to preprogrammed trigger events. An external debug
breakpoint pin is set up to trigger a processor “micro-
breakpoint” event when the pin is asserted. In response to
this trigger event, the processor executes a
preprogrammed debug command called “All Array
Freeze” which is the second key DFT feature that makes
Array Dump possible. The “All Array Freeze” feature
causes all major memory arrays in the device to freeze
their normal execution. The Array Dump feature is
capable of acquiring array data at any core cycle relative
to a processor’s external bus cycle.

Scanout
Accessibility to internal control and datapath signals also
greatly enhances FA capability. Scanout is the FA tool
developed at Intel for monitoring internal control signals.
Scanout has already been successfully and regularly used
in Pentium microprocessor failure analysis. One of the
Pentium processor’s external pins is used to trigger a Test
Access Port (TAP) instruction that causes the data from
selected control and datapath signals to be latched into
Scanout data buffers. The data captured and stored in
these buffers are then shifted out serially through the TAP
controller’s Test Data Output (TDO) pin.

The Scanout FA tool’s implementation on the Pentium Pro
microprocessor is triggered differently from the Pentium
processor’s method. This is necessitated by the
introduction of odd bus-to-core clock ratios. To overcome
this problem, an innovative approach that uses the Micro
Breakpoint DFT feature was developed similar to the one
in the Array Dump tool. This Micro Breakpoint trigger-
response mechanism makes it possible to capture Scanout
data on every core cycle of the processor’s execution.

A total of around 2000 internal nodes are available for
observation. This coverage is much wider than what was
available on the original Pentium processor (about 200
Scanout nodes) and newer versions of the Pentium
processor family (about 400 Scanout nodes). A program
was also written to compare the Scanout data with RTL
simulation to aid in interpreting the data. The tool
automatically highlights Scanout mismatches.

Memory DAT and LYA Mode
Direct Access Test (DAT) is a special test mode that is
specifically intended for manufacturing use. Newer
implementations of the Pentium Pro processors contain
DAT capability to enhance the testability of most of the
major core memory structures. Once DAT mode is

enabled, the processor will behave like a pipelined
SRAM. It accepts DAT commands every bus clock and
returns data for a DAT memory read command to the
external output bus a few clocks later.

Figure 4: Example of a cache raster bitmap display
showing a cache column failure

In DAT mode, the processor only understands DAT
instructions. These instructions incorporate the memory
array’s address information, input data, and array access
commands to specify a particular cache operation. The
information is directly fed to the array under test. This
direct access bypasses the decoding circuitry used in
normal operation. Thus, it reduces the amount of effort
required to determine whether a cache failure is caused by
a problem in the memory array itself or a problem in the
supporting circuitry such as the address decoders.

Because only a subset of the external pins are needed in
DAT mode, it is very easy to develop a small but effective
cache-testing pattern to raster the entire cache line within
one memory array. Also, the entire set of advanced cache-
testing algorithms used in production testing can be easily
written into a small test pattern. If a failure occurs in
production, the rastering program can easily provide the
failing set and the way and bit information in a bitmap
form for failure analysis purposes. Figure 4 above shows
an example of the cache rastering program’s bitmap
display. (In this figure, bits (columns) are arranged
horizontally, and cache lines (rows) are arranged
vertically.)

Column
failure



Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium  and Pentium  Pro
Microprocessors 5

However, although DAT mode testing provides the failing
set and way and bit information, it provides little
information about the failure mechanism. In the latest
version of the Pentium Pro processor, a Low Yield
Analysis (LYA) mode was added as an enhancement to
DAT mode for the largest cache structure.

Figure 5: Schematic diagram of a 6-transistor SRAM cell
for LYA mode illustration

When LYA mode is enabled, the bitline (BL) and bitline#
(BL#) signals of a memory cell are connected to external
pins. By having this direct access through the external
pins, DC measurements on the memory cell can be carried
out easily. LYA mode testing produces cell transistor
current readings, as well as cell trip points and other DC
measurements. From these LYA “signatures” acquired
from a failing device, the failure can be quickly
categorized into a few different failure mechanisms, such
as open transistor, missing contact, or shorted transistor.
With this information, the defect location can be more
accurately located, and the physical FA can focus on that
location. This results in shorter analysis throughput time
and improved success rates in handling cache failures.

Figure 5 above shows a 6-transistor memory cell. When
LYA mode is enabled, the BL and BL# signals of this
memory cell are directly accessible from the external pins.
Enabling the word line select (WL) signal activates this
memory cell. In this case, both transistors M1 and M6 are
turned on to allow various DC measurements to be
performed on this memory cell.

PBIST
Programmable Built-In Self-Test (PBIST) is a memory
DFT feature that incorporates all the required test systems
into the chip itself. The test systems implemented on-chip
are as follows:

• algorithmic address generator

• algorithmic data generator

• program storage unit

• loop control mechanisms

PBIST was originally adopted by large memory chips that
have high pin counts and operate at high frequencies,
thereby exceeding the capability of production testers. The
purpose of PBIST is to avoid developing and buying more
sophisticated and very expensive testers.

The interface between PBIST, which is internal to the
processor, and the external tester environment is through
the standard TAP controller pins. Algorithms and controls
are fed into the chip through the TAP controller’s Test
Data Input (TDI) pin. The final result of the PBIST test is
read out through the TDO pin.

PBIST supports the entire algorithmic memory testing
requirements imposed by the production testing
methodology. In order to support all of the required test
algorithms, PBIST must have the capability to store the
required programs locally in the device. It must also be
able to perform different address generation schemes,
different test data pattern generation, looping schemes,
and data comparisons.

The program storage structure is used to store the test
algorithm. The algorithm includes the types of operations
to be performed (e.g., memory read, memory write), the
types of address generation modes, the data to be written
into and read out from the memory array, and the types of
looping schemes.

The address generator is responsible for generating the
memory address where the next data are read from or
written into. Correct address generation is very important
because the physical mapping of the array is always
different from its logical mapping. In order to achieve the
required test coverage, the address generator needs to be
able to generate addresses in different fashions in order to
accommodate different kinds of addressing flows such as
March-C, Galloping patterns, Address Complements, Fast
X, and Fast Y.

The data generator plays a very similar role to the address
generator. In order to get the inverse data for each
physically adjacent cell, data has to be generated based on
the logical-to-physical mapping of the memory array and
the data background that is required, such as
checkerboard, reverse checkerboard, column stripe, row
stripe, and diagonal.

The loop control system is the major sequencing logic in
PBIST that allows testing of the entire memory array
using only a few program steps. Without the looping
control mechanism, test programs of thousands of lines
need to be written in order to test an entire array. With
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PBIST, testing of the large on-chip memory arrays
becomes a lot simpler. Also, PBIST can be used for Test
During Burn-In (TDBI) where the processor is tested in
the burn-in oven. Other cache-testing methods cannot be
used because only the TAP controller pins and a few other
control pins are active in the burn-in environment while
the rest of the pins are tristated.

RTL Simulation For FA
The motivation for doing fault isolation based on RTL
simulation is driven by the need for detailed information
about the internal workings of the processor. This
information is readily available from the RTL model.
Furthermore, as described in the previous sections, the
implementation of more sophisticated DFT and debug
features in the Pentium, Pentium Pro, and Pentium II
generations of microprocessors have helped to promote
this technique by providing better observability of the
internal signals, thus resulting in less dependency on e-
beam probing.

In previous generations of Intel’s microprocessors, RTL
simulation was used in the failure analysis flow primarily
for test pattern generation, test modification, and signal
tracing. But the fault isolation process largely depended
on extensive e-beam waveform probing work to trace the
failure from an architectural starting point, moving
upstream until the signals acquired at the inputs of a logic
block were correct, while the output was faulty.

Because of the lack of observability of the internal nodes,
e-beam probing became the necessary means to gathering
the detailed internal signal information of a
microprocessor. However, relying on e-beam probing
alone has become increasingly difficult or even futile on
current generations of microprocessors as more metal
interconnect layers are used (obscuring most local signals
that run only in Metal1 and Metal2 layers). Additionally,
while products are beginning to move into C4 packaging,
next-generation waveform probers that allow probing of
internal signals through the backside of the die are still not
widely available.

Figure 6: A high-level block diagram of the RTL model
simulation environment

Advances and improvements in today’s RTL simulation
tools used for Intel microprocessors result in a better and
more efficient environment for performing fault isolation
than that of the previous generation of RTL simulation
tools. More sophisticated capabilities and user-friendly
features have been added to the RTL simulation
environment, such as more extensive node coverage; the
capability to use application programming interface (API)
programs; an interactive simulation mode; and reliable
simulation state, save, and restore functions. Employing
other design tools such as schematic viewers, layout
databases, and circuit-level simulation to complement the
RTL simulation analysis further helps in the fault isolation
process. Figure 6 provides an overview of the key
components of the RTL model simulation environment.

The simulation tool’s API enables application programs to
access signal information from the full chip RTL model of
the microprocessor during the model's execution. The
application program runs as a separate process and uses
routines provided in the API library to obtain signal
information from the model. The primary purpose of the
API is to isolate the model from user events, enabling the
designer (as well as failure analyst) to quickly modify
application programs without having to relink the model.
The advantage of such an API is its reusability. It is
platform independent and can run with several models.
For the average user, the API is easier to support than a
user event, and it is simpler to write and debug.

A very useful RTL simulation API is the p6watch tool,
which enables visualization of large amounts of RTL
signal values by displaying them in a human format. For
example, instead of displaying a set of control signals for
a finite state machine (FSM) in binary or hexadecimal
format, the user can use p6watch to convert the signals to
strings that represent the individual states of the FSM.
Another example would be to use p6watch to display the

RTL Simulation

Functional Model:
HDL sources

Stimuli:
ASM code

User Interface:
internal or external

signal controls

Output (Trace file for test pattern or
internal signal tracing during

b )
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field contents of an array in terms of their decoded or
functional meanings.

In this method of performing fault isolation, the failure
location is deduced based on extensive analysis of the full-
chip RTL model. The failure analyst is also required to
have an understanding of the processor’s
microarchitecture to aid in interpreting the HDL
information and the RTL simulation results, and
comparing these data with the behavior observed in the
failing device. This fault isolation method is very similar
to RTL debugging during the design phase.

The RTL simulator provides crucial information on the
expected behavior of the processor. By running the tests
that cause the DUT to fail using the RTL simulator, the
failure analyst can observe the processor’s pipe stages and
see how instructions and data are being transacted and
propagated. It is also useful to run passing tests to
compare the differences in control and data handling.
Among the things to look for at the high level is the flow
of data along the datapath blocks and the control signals
that arbitrate the machine pipeline. The gathered
information will help to determine the logic block that is
most likely to have caused the failure.

When the logic block has been isolated, more detailed
RTL signal analysis is performed within that logic block.
By isolating the failure to a small logic block, the analyst
can generate more exhaustive and more focused tests for
that block of logic. These new focused tests are then run
on the failing device to see how it responds to each test
case. For example, if a failure is isolated to a multi-ported
memory block, then the focused tests are targeted at all of
the available ports to see if there is any specific
dependency of the failure on a particular port. Other test
cases would involve testing the address generation logic.

Moreover, when running a test it is possible to introduce a
“defect” into the model and simulate its effects in terms of
the processor’s response to do a “what-if” type of
analyses.

E-beam-Less Fault Isolation
E-beam-less fault isolation can produce results faster and
reduce analysis by focusing on test data collection, data
analysis, and comparison with simulation results. The cost
of the analysis is reduced by avoiding the e-beam probing
step in the fault isolation process. E-beam probing work
involves many hours of sample preparation time (to
perform depassivation and prepare probe holes using the
FIB) as well as many more hours of waveform acquisition
time. Avoiding the e-beam probing step can save a
significant amount of analysis time. However, in order to
skip e-beam probing work, an alternative method is

required to collect valuable information from the failed
device. This alternative approach is described in the
following paragraphs in this section.

First of all, the failing signature needs to be identified in
order to understand why the unit is failing from the
standpoint of the processor architecture. Then, DFT tools
are used to collect internal node information to further
understand the failure mode. Later, RTL simulation is
performed to verify the hypothesis made based on the
collected data and to identify the failing node. As RTL
simulation is usually good enough to anticipate the
processor’s internal operation and build a hypothesis
about the failure location, probing is not necessary. When
compared to the traditional approach where probing is
needed to confirm the failing node, which takes an
average of 31 days, this e-beam-less approach takes an
average of only 15 days throughput time. This new
approach has been shown to produce a very accurate
estimation of the defect location with greater than 95%
success rate on the Pentium and Pentium Pro
microprocessors. The high success rate can be attributed
to the avoidance of the high-risk steps involved in e-beam
probing, especially during sample preparation. This
method readily and efficiently supports Intel’s virtual
factory concept where fault isolation work is easily shared
among all participating factories. By using the FA tools,
data collection can be done at the site where the failing
device is located. These data are then sent to the site
where the product FI expertise resides for in-depth
analysis. The predicted defect location is then sent back to
the original site for physical FA.

Advanced FI Techniques
The next sections of this paper present the advanced fault
isolation techniques used on the Pentium and Pentium Pro
microprocessor families. Specifically, these techniques
involve the PC FA tool and the SECC FA tool, both of
which were developed to address issues that will be
discussed in the following sections, and to overcome the
challenges and roadblocks described in the introduction.

PC-based FA Tester Platform
With the increasing complexity of Intel’s microprocessor
designs, failure analysis TPT would be longer without the
adoption of DFT and DFFA features in fault isolation
techniques. However, most of the DFT-based fault
isolation tools and techniques have been developed for
use on expensive functional testers. To reduce the
dependency on these expensive lab testers, a new
approach has been developed based on the personal
computer (PC) platform. The key elements of the PC FA
tester platform are shown in Figure 7.
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Figure 7: A simplistic block diagram of the PC-based FA platform configuration

The In-Target Probe (ITP) tool has been widely used for
system-level debug and validation. On this test platform, a
host PC is used to control a target PC where the device
under test (DUT) resides. The host PC is used to control
the DUT and to upload the test program that the DUT will
execute. The ITP is developed around the processor’s
Probe Mode debug feature and is able to access all
programmer-visible and non-visible registers in the DUT.
This gives the ITP the necessary control mechanisms to
halt the DUT, modify its internal state, and resume normal
program execution at any chosen instruction boundary.

In this new approach, the ITP is used as the controller of
the target PC where the failing pattern can be uploaded to
the target PC through the TAP controller interface. The
host-target PC configuration acts like a tester where it
drives the necessary data to the input pins of the
microprocessor. However, the output pins of the
microprocessor are not strobed to compare with expected
data. Rather, the output data is monitored by a hardware
board that sends out a signal when certain conditions are
met. This signal can be used as a trigger signal, such as
the e-beam trigger signal, to enable hooking up the DUT
to the e-beam, although this has only been proven
experimentally.

In order to do e-beam probing, the DUT needs to execute
the test program in a loop. To achieve this, another
hardware board is used to monitor the activities of the
DUT. When a preset condition is met, the hardware board
sends out a signal that is used to reset the DUT. Once
reset, the DUT restarts execution from the normal boot-up
address and reruns the entire test pattern.

FA tools based on the processor’s DFT features have also
been implemented on the PC test platform where the host
PC is used as an interface to the DUT. Commands to
invoke the DFT features are fed into the DUT through the
TAP controller interface on the ITP board. The results of
the test are dumped to the host PC through the same TAP
controller interface.

FA tools that employ the DFT features such as Scanout,
Array Dump, and cache rastering have been developed for
the PC test platform. To use tools such as Scanout and
Array Dump, the DUT is initially halted. The required
register for stopping the DUT from execution is
programmed through the ITP. The trigger condition for
the breakpoint is set, and the desired processor response to
the breakpoint is also programmed. Next, the original
architectural state is restored, and the DUT is allowed to
resume execution from the point where it was halted.
When the preprogrammed breakpoint condition is met, the
DUT will stop, and as a result of the response to the
breakpoint, the data are shifted out through the ITP to the
host PC. These data provide information on the internal
state of the DUT to enable further fault isolation.

To perform cache rastering on the DUT, a data
background for the processor’s internal cache is preset by
writing into each memory location. Examples of the
patterns typically used for cache rastering include
checkerboard and reverse checkerboard patterns. Next, the
data in the memory array are read out and compared with
the data that were originally written. If there is any
discrepancy between the acquired and expected data, the
failing memory cell is identified. The PC is a perfect
platform for data-retention type of memory testing
because all commands and data are shifted serially
through the TAP controller. This method takes longer to
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perform cache rastering as compared to lab functional
testers, but it is cheaper, and it frees up the utilization time
of the lab testers.

By providing capabilities similar to a lab tester such as
providing stimuli to drive the DUT, enabling interface to
the e-beam, and supporting various FA tools, the PC test
platform can be used for functional FA work, a task which
had been performed predominantly by lab testers. The
complete test platform is significantly cheaper and more
compact than the traditional workstation and tester
combination.

A few FA cases have been successfully resolved using this
PC test platform. E-beam waveform of a clock signal has
been acquired indicating the feasibility of using the PC to
replace a tester.

SECC Form-Factor Testing
The concept of processor bus fractions was introduced to
make it possible to increase the processor’s core clock
frequency while at the same time maintaining the external
bus clock frequency at a lower speed. To support this
idea, a frequency multiplier is designed into the processor
to multiply the external bus clock to produce a higher
frequency clock in the processor core. The term “1:2 bus
fraction” refers to a clock configuration in which the
internal processor frequency is twice as fast as the speed
of the external bus. For example, for an external processor
bus clock of 66 MHz, the internal clock frequency is 133
MHz. In this situation, there are two clock domains: one
running at 66 MHz and another running at 133 MHz.
Extra care is required when developing test programs for
products that support bus fractions: input and output data
that cross the clock boundaries must be correctly aligned.
The Pentium processor only has one bus clock domain
and one core clock domain. These two different clock
domains are isolated from each other by the processor’s
input and output buffers. In this case, data alignment is
handled by the processor itself, thus reducing the amount
of complexity associated with aligning the data in the test
pattern.

The Pentium II processor introduces a new bus fraction
concept, which increases the complexity of the test pattern
development and testing. The Pentium II processor
implements two separate sets of bus frequencies: a
frontside and a backside. The frontside bus is connected to
external components such as chipsets and other peripheral
interface devices. Alternatively, the backside bus is a local
bus for the Pentium II processor that is connected only to
the level-2 (L2) memory. These two buses run at different
clock speeds. The backside bus frequency is always equal
to or faster than the frontside bus frequency. Together
with the internal core clock, there are a total of three
different clock domains in this implementation. In this

case, the processor’s bus fraction configuration is
described in terms of all three clock domains relative to
each other. The term “1:4:2 bus fraction” refers to a
processor with a backside bus running 2x faster than the
frontside bus, and a core frequency that is 4x faster than
the frontside bus or 2x faster than the backside bus. The
data alignment between the frontside bus and the core
logic is handled by the frontside input and output buffers.
Meanwhile, the data alignment between the backside bus
and the core logic is handled by the backside input and
output buffers. The user, or the test program developer, is
responsible for managing the data alignment between the
frontside and backside buses.

For a round numbered (or even) bus fraction configuration
between the frontside bus and the backside bus, the data
alignment can be easily handled by the test program. This
is illustrated in Figures 8 and 9 below.
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Figure 8: A processor’s frontside and backside data
switching and alignment for a 1:3 (frontside-to-backside)
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Figure 9: A processor’s frontside and backside data
switching and alignment for a 1:4 (frontside-to-backside)

bus fraction

In the examples shown in both of these figures, frontside
data switches at the same time as backside data. This
boundary can be used as the alignment point for both the
frontside and backside data. However, in a fractional (or
odd) bus fraction configuration, data switching and data
alignment become more complicated. An example of a
fractional frontside-to-backside bus fraction is a 4:7
(frontside to backside) configuration.

In the 4:7 example shown in Figure 10 below, when the
frontside data FD1 switches to FD2, the data are not
aligned with backside data switching. The same situation
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occurs during the transitions from FD2 to FD3 and FD3 to
FD4.
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Figure 10: The die frontside and backside data switching
and alignment for 4:7 (frontside-to-backside) bus fraction

The functional tester needs to simultaneously drive input
data to the processor and strobe for the output data on
both the frontside and the backside bus. Advanced
production testers are capable of handling these situations
because they offer very flexible timing capabilities where
the rising and failing edges of the data can be placed
anywhere within a tester period. This allows the edge
placement of the first cycle to be different from the edge
placement of the second cycle. Unfortunately, the failure
analysis test platform employed by the FA labs does not
support advanced flexible timing capabilities. Therefore,
functional testing of a Pentium II processor in a lab
environment becomes very difficult.

The fractional bus testing problem is addressed by
mounting the Pentium II processor onto a Single Edge
Contact Cartridge (SECC) card. The backside bus, which
used to be accessible externally, now only communicates
with the on-board L2 cache. Only the frontside bus is
accessible to the external tester through the edge
connector.

In the SECC card form factor testing, the FA tester only
needs to handle the data transactions occurring on the
frontside bus; the backside bus data transactions are
transparent to the test platform. Hence, the complex
frontside:core:backside bus fraction is reduced to a
simple frontside:core bus fraction. This setup enables the
normal FA functional tester to execute test vectors that use
complex bus fractions.

To support SECC testing on a normal FA tester, a pattern
conversion tool is needed to convert a pattern from
component format into SECC format. This includes
extracting the frontside bus data and realigning it into
SECC format. This concept has been proven to be very
successful in analyzing the latest Pentium II
microprocessors.

Future Directions In Failure Analysis
Techniques
The advent of more sophisticated DFT and debug
features, coupled with faster RTL simulators and better
computer-aided fault debugging tools increases the usage
of the fault isolation methods described in this paper. The
trend towards more extensive use of computer based
analysis tools is continuing. With the introduction of new
DFT features which provide high degrees of
controllability in addition to observability in next
generation Intel processors, the concept of performing
computer-aided fault diagnosis at the logic or RTL level is
taken to the next abstraction level of the design, where
fault diagnosis is done at the gate level using intelligent
computer-aided fault diagnostic tools. By having both
observability and controllability of many important
internal signals, the concept of virtual probing will be
realized.

Conclusion
As device complexity and interconnect layers increase,
new fault isolation techniques need to be continuously
developed in order to maintain a high analysis success rate
and short throughput time. As discussed in this paper,
performing FA using traditional methods has been shown
to lower FA success rates. By quickly isolating the defect
location and identifying the failure mechanism that is
causing low manufacturing yields or abnormal failure
rates, problems can be fixed in a short amount of time to
improve manufacturing yields. In addition, the corrective
actions developed as a result of these FA techniques are
documented and proliferated to newer products in the
form of design rules. This will prevent the problems from
recurring, which in turn enables even a steeper volume
ramp. The innovative FA techniques developed for the
Pentium and Pentium Pro processors have been one of the
key elements in the continued exceptional performance of
Intel’s product time-to-market and high-volume
manufacturing.
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