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Abstract

This paper describes a model developed to calculate the
number of redundant good die per wafer. A block
redundancy scheme is used here, where the entire
defective memory subarray is replaced by a redundant
element. A formula is derived to calculate the amount of
improvement expected after redundancy. This
improvement is given in terms of the ratio of the overall
good die per wafer to the original good die per wafer
after considering some key factors. These factors are
memory area, available redundant elements, defect
density and defect types with respect to the total reject die
and defect distribution on the memory area. The model
uses Poisson’s equation to define the yield, then the
appropriate boundary conditions that account for those
factors are applied. In the case of a new product, knowing
the die size, memory design, and total die per wafer, the
model can be used to predict the redundancy yield for this
product at different initial yield values. Optimizing the
memory design by varying the number of memory blocks
and/or redundant elements to enhance redundancy is also
discussed. The model was applied to three products from
two different process generations and showed good
agreement with the measured data.

Introduction
Due to the continuing  increase in  the size of memory
arrays, reaching a high yield from the same wafer is
more challenging than ever. Redundancy is a way to
improve the wafer yield and to reduce the test cost per
good die by fixing potentially repairable defects. In order
to forecast the volume of a certain product when
redundancy is applied, it is important to estimate, as
accurately as possible, the number of die gained after
redundancy.

Redundancy is the process of replacing defective circuitry
with spare elements. In SRAMs, rows and/or columns
can be replaced, as well as an entire subarray. In a

previous study[1], a redundant yield estimation
methodology was developed. It is applicable to row,
column or block redundancy schemes. It distinguishes
between repairable and non-repairable faults within a
memory block.  In order to apply this method, new CAD
tools are required.  This method is useful if row or
column redundancy is  used.

This paper will focus only on the yield estimation for
block redundancy, as block redundancy  was preferred
over row and column redundancy for the SRAM
architecture. It is usually easier to replace the entire
subarray. This might seem like overkill; however,
replacing the entire subarray  allows for the replacement
of defective peripheral circuits in addition to just the
memory array elements. It also allows for the
replacement of  multiple bad bits, or other combinations
of failing bits, rows and columns.

A yield multiplier M is defined as the ratio of the total
good die after redundancy to the original good die per
wafer,  or

M = total redundant good/original good        (1)

so that the redundant yield , Yred , is given as

Yred  =  M  x  Y                                              (2)

where Y is the initial yield. Forecasting of the
redundancy yields is based on how accurately the factor
M is calculated. A formula for M was obtained by using
the correlated defect model. According to this model, an
expression for the yield of die containing a number of
defects, I, is given by

yI={(n+I+1)! x (DA)I}/{(I! nI -1)x(1+D A/n)n+I} x fI     (3)

where
yI = yield of a die with I defects
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D = average defect density ( #/cm2 )
A = die area (cm2 )
n= correlation factor between defects
f = fraction of the die area that contains the
defects

The yield of die with zero defects can be obtained by
setting I = 0  and f = 1 as

Y = 1 / { 1 + (A D / n) }n                  (4)

With n = 4 and using equation (4) to substitute for the
defect density, equation (3) becomes

       yI= Y  x ((I+3)(I+2)(I+1) /6) x fI x ( 1-Y 1/4) I         (5)

Introducing g as the fraction of repairable defects, g
varies depending on the number of repaired defects. An
expression for M was obtained  by summing yI  over the
ratio of correctable defects  and substituting in (2)

M = 1 + kΣI = 1 ((I+3)(I+2)(I+1) /6) x( g f ( 1-Y 1/4)) I     (6)

M was calculated by entering arbitrary values of g and f
in equation (6). However, there was no evidence to
support the values of the repairable defect density
represented by g used to  calculate M.

Another formula was used to estimate the yield multiplier
M .  The yield is derived from Poisson’s equation [2]

Y  =  exp ( -AD )   (7)

Instead of using a constant defect density, D, Murphy
assumed several defect density distributions[3]. The most
preferred distribution was a Gaussian. Stapper used a
gamma distribution, which led to the following yield
formula [4]

 Y = 1 / { 1 + (A D / α) }α   (8)

where α is the average value of the coefficient of
variation for the gamma function. The yield multiplier
derived from the previous yield formula is given by

M =  S x ( 1 + 0.01 ( L + I ) Asb D / k ) k  (9)

where
S = fuse programming success rate

              I = number of redundant elements
L = number of subarrays
Asb = area of subarray ( mm2 )
k = constant for MOS process

0.01=conversion from mm2 to cm2

This simple formula is actually overestimating the
redundancy improvement, since it assumes that all the
defects are repairable.

In order to get a better estimate of the yield improvement,
the nature and distribution of the defect need to be
understood. These are taken into account  in this model.
When considering defects, it is important to realize that
not all reject die are repairable: a die failing for a short,
for example, cannot be repaired. Also the number of
defective subarrays that could be repaired depends on the
available redundant elements per memory block. This
means that having more than one defect per die requires
a certain distribution of those defects in order for
redundancy to be successful.

Taking into account the above factors and using
Poisson’s equation to describe the yield, the present
model was able to predict the redundant yield within the
same range as shown by the real data. The following
section illustrates how the key parameters affecting
redundancy are used to develop the model.

SRAM Array Layout
Figure 1 shows the layout of a SRAM memory array.
Before going into details, the following terms are defined
as they will be used throughout the paper:
• Subarra y. This is a unit array of the memory area,

and  is shown as subarrays 0 to 72 in Figure 1.
• Memory block or bloc k. This is a segment of the

memory area, and  is one of four rows shown in
Figure 1.

• Redundant element or elemen t. This is a spare
subarray used to replace a memory subarray, and  is
given as subarrays R in Figure 1.

 
 The die consists of two areas:
• Repairable are a. This includes all the circuitry in

the subarray. In this model the repairable area is the
sum of the areas of the memory subarrays.

• Non-repairable are a. This includes the periphery
area. The redundancy elements are also considered
part of the non-repairable area.

 
 Block redundancy is illustrated in Figure 1. The defective
subarray “4” is replaced by the redundant element R  in
the same memory block. This is done by programming
the right fuses and shifting the array assignments.
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SRAM Array Layout

I/O 0 0 1 2 3 4 5 6 7 8 R 17 16 15 14 13 12 11 10 9 I/0 1

I/O 2 18 19 20 21 22 23 24 25 26 R 35 34 33 32 31 30 29 28 27 I/0 3

I/O 4 36 37 38 39 40 41 42 43 44 R 53 52 51 50 49 48 47 46 45 I/0 5

I/O 6 54 55 56 57 58 59 60 61 62 R 71 70 69 68 67 66 65 64 63 I/0 7

SRAM Array Layout

I/O 0 0 1 2 3 4 17 16 15 14 13 12 11 10 9 I/0 1

I/O 2 18 19 20 21 22 18 18 18 18 R 35 34 33 32 31 30 29 28 27 I/0 3

I/O 4 36 37 38 39 40 36 36 36 36 R 53 52 51 50 49 48 47 46 45 I/0 5

I/O 6 54 55 56 57 58 54 54 54 54 R 71 70 69 68 67 66 65 64 63 I/0 7

4 5 6 7 8

 
 Figure 1: SRAM array layout used in the model

 

 Definitions
• Yield Equation:
 The yield model used here is Poisson’s yield model [2]

 Pn   = { λ n   exp ( - λ ) } / n ! (10)
 
 where

 Pn  =  the probability of n defects on a die of area
A and defect density D
 λ   =  A D

 
 Defining the failure probability as the probability that a
die has one or more defects as
 
Fn   =  ∑∝

1  { λn   exp ( -  λ ) }/  n ! = 1 - exp ( -  λ)      (11)

 
 and defining the yield as the survival probability
 
 Sn   = 1  - Fn               (12)

 the yield equation is then
 
 Y=  exp ( -  λ) = exp ( -AD ) (13)
 
 
• Improvement Factor:
 The improvement factor is defined as
 

 M =  (Ngd + Nrep) / Ngd  (14)
 where
 Ngd = initial number of good die per wafer
 Nrep = number of repaired die per wafer
 
 Using Poisson’s formula to derive an expression for Ngd
and Nrep, Ngd can be defined as the number of die with
zero defects
 
 Ngd  = N exp ( -  λ)             (15)
 
 where N is the total number of tested die. An expression
for Nbd is given by
 
 Nbd  = N ( 1  -  exp ( -  λ) )            (16)
 
 which is the number of die with one or more defects.
Assuming all bad die are repaired, Nrep is then equal to
Nbad, and a formula for a maximum improvement factor
is given by
 
 Mmax  = exp ( -  λ)              (17)
 
 However, this in fact is not the case; therefore, Nrep
needs to be represented by a more realistic formula. The
model described in this paper started with a simple
assumption and more details were gradually added to get
as close as possible to the real case. The following section
illustrates this development.
 
 

 Yield Improvement Formula
Simple Model
 As a first approach, Nrep is represented by the number of
die with one defect, and Poisson’s formula is used again
to describe Nrep(1) as
 
 Nrep(1) = N  λ   exp ( -  λ )                (18)

 
 Substituting the improvement factor formula, equation
(14)
 
 Msimp = 1 + λ                            (19)
 
 As mentioned before, not all the die area could be fixed;
only the memory area was repairable. Instead of A, the
total area, Arep, is used in the expression of λ, where
 
 Arep = Farea  x   A              (20)
 
 and Farea  is the fraction of the repairable area. Since only
random defects can be fixed by redundancy, the random
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defect density is used in the expression of λ, where D is
found from the yield equation, equation (13),  as
 
 D =  - ln Y /A               (21)
 Here Y is the random yield and is given by Y = Ngd/N
and is calculated from the data. Using Arep instead of A,
the expression for λ  that will be used for the rest of the
analysis is then
 

 λ = Farea  x   A D               (22)

Cumulative Model
 Next, a better definition of Nrep is obtained: the number
of die with one, two, or n defects. Poisson’s equation is
used to derive a formula for the number of die with a
certain number of defects. Since
 
 Pn =  { λn   exp ( -  λ )  }/  n !              (10)
 
 where n is the number of defects, the following
improvement factors can be defined:
 
 M1 = improvement factor from die with one defect
 M2 = improvement factor from die with two defects
 Mn = improvement factor from die with  n defects and is
equal to
 
  Mn = 1 + Σ Nrepn / Ngd              (23)

 where
 

 Σ Nrepn =  N Σ { λI exp( -λ } /  I !                (24)
 from  I = 1 to  I = n
 
 The improvement factors are then given by
 
 M1=1+λ………………………………1 def/die
 M2=1+λ+(λ)2/2!……………………...2 def/die
 
 and for n defects per die
 
 Mn= 1+λ +( λ ) 2 / 2!  + ( λ ) 3 / 3! + …+ ( λ ) n / n!    (25)
 
 Since there is a possibility of having more than one
defect per block, λ must be multiplied by a so-called
repair probability Rn, where Rn  is the ratio of the
combination of blocks and defects that can be repaired to
the total number of combinations. This depends on the
available number of redundant elements. Mn is then
written as
 

 Mn= 1+ R1 λ + R2 ( λ ) 2 / 2! + R3 ( λ ) 3 / 3! + …
         + Rn( λ ) n / n!              (26)
 
 An expression for Rn is found by using a binomial series
expansion. If G = X + Y, where X and Y represent the
number of blocks, the resulting binomial series is
 
 G n  = ( X + Y ) n  = X n  + n X n-1  Y + n C 2 X n-2 Y 2 + …
+ n C k X n-k Y k  + Y n               (27)
 
 with
              n C k = n !/ k ! ( n-k ) !                                   

(28)
 
 as the coefficient of X. Note that this coefficient
represents the number of terms with X raised to a certain
power, where this power represents the number of defects
on this block.
 
 If G contains more than two terms, or more than two
blocks, G is the written as
 
        G = X + Y + Z + … up to b blocks
 
 and the series becomes
 
 G n  = ( X + Y + Z +.. ) n  = X n  + n X n-1  Y + n X n-1  Z
+ n X n-1  … + n C 2 X n-2 Y 2 +  n C 2 X n-2 Z 2 + ... + n C k

X n-k Y k  + n C k X n-k Z k  +… + Y n + Z n + …          
(29)

 
 Knowing that each redundant element, e, can fix one
defect, a term raised to the power of e+1 or higher
indicates that it has more defects than elements and it
cannot be fixed. This means that the number of possibly
repaired blocks is equal to the total number of blocks and
defect combinations minus the sum of coefficients of the
terms raised to the  power of e+1 or higher. All terms can
be treated similarly, since all blocks are equal, and terms
raised to the same power are collected together. Their
coefficients can then be added together as well. Each
coefficient in the previous series is repeated b-1 times for
b terms. Except for the highest power in the series,  it
exists only b times.  This means that the sum of
coefficients can be written as
 

 sum = Σ b ( b - 1) ( n - k )  n ! / k ! (n - k )!      (30)
 
 from  k=1 to k = n, the number of defects. The number of
repairable blocks is then
 
 G rep  =  ( b ) n  -  Σ b ( b - 1) ( n - k )  n ! / k ! (n - k )!
 from k = e+1 to k = n  and  n ≥ k always
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 From the definition of Rn, the total combination of blocks
and defects can be given by bn. The repair probability is
the ratio of the possibly repaired count to the total count,
or
 
 R n  = G rep / b

n

   = {( b ) n - Σ b (b - 1) ( n - k ) n ! / k ! (n - k)! }/( b) n  (31)
 
 and the formula for the cumulative improvement factor is
 
 Mn= 1+R1 λ+R2 (λ) 2 / 2! + … + Rn(λ ) n/ n!            (32)
 
 Note that this formula is applicable to up to e x b defects,
which is the total number of elements and blocks; beyond
that it is not useable. Higher order terms in the series are
also negligible and can  be ignored without affecting the
improvement factor.
 
General Model
 A general model is developed by including the effect of
defect type in the previous improvement factor formula.
The cumulative model is in fact overestimating the real
data, because it assumes that all die are repairable.
Studying the reject die data, it was found that only
certain die could be fixed, namely raster type bins which
occupy a certain fraction of the total reject die population.
Adding to this the other restriction of obeying the
previously described repair probability, only a certain
fraction of those die is repairable. An efficiency factor η
is introduced into the cumulative model.  It is defined as
the effective fraction of bad die repaired extrapolated at
the maximum yield for a certain repairable area. It is
calculated from
 
      η =  γ  / Farea (33)
 where

 γ = ( Nbd_cr/ Nbd)  x (Nrep / Nbd_cr )
 Nrep = number of repaired die
 Nbd = number of reject die
 Nbd_cr = correctable reject die

 
 which cancels out in the expression of γ. λ  is then
modified to
 

λλ =   η Farea   x A  D (34)

which is then used in the general model

Mn= 1+ R1 λ+R2 (λ) 2 / 2! +… + Rn(λ ) n/ n! (35)
This is  the same as the cumulative model formula,
equation (32),  except for the expression of λ. γ is

obtained from the empirical data, so that one value of γ
can be used for products from the same process
generation. For a new process, γ  from a previous process
can be used, since its value is close from one process to
the other.

Redundant Elements and Memory Blocks
Optimization

In this section, how the number of redundant elements
and memory blocks affects the yield improvement is
studied. Increasing the number of spare elements
increases the chance of repair. However, this impacts the
repairable area, since the total area increases, while the
repairable area is fixed. The dependency of the
improvement factor on both the number of redundant
elements and the repairable area is studied in order to
check the possibility of improving redundancy by varying
these two factors.

Since the improvement factor is a function of the
repairable area and the defect density, and since the
defect density is also a function of the area as calculated
from the yield equation, equation (21), this equation is
used to substitute for D in the expression for λ, equation
(34), as

λ = η Farea x (A D) = - η Farea x ln Y
(36)

The  total die area is then written as

A = Arep + Anrep +  4 x Ael (37)

where Arep is the repairable area and is equal to the area
of the  subarrays,  Anrep is the area of the die circuitry,
and Ael is the redundant element area and is equal to the
subarray area. Increasing the number of redundant
elements by sets of 4,  the total area is

A = Arep + Anrep + 4 x e x Ael (38)

where “e” is the number of elements/block. The fraction
of the repairable area is then

           Farea = Arep / (Arep + Anrep + 4 x e x Ael)            
(39)

and

λi  = - η Arep ln Y / ( Arep + Anrep + 4 x I x Ael) (40)
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To study the behavior of the improvement factor with e
and Arep , start with the  general yield improvement
factor formula, equation (35)

Mn= 1+ R1 λ +R2 (λ ) 2 / 2! +R3 (λ) 3 / 3!+ … +Rn(λ) n / n!

In the case of adding extra redundant elements, the die
area, and hence λ, is also changing, so that for each case
with a certain number of elements the value of λ is
different.  The improvement factor formula is written as

1 element, n defects:
Mn,1= 1+ R1λ1+R2 (λ1)

 2/ 2!+R3 (λ1)
 3 / 3!+ …+ Rn(λ1)

 n /
n!

2 elements, n defects:
Mn,2=1+R1 λ2+R2 (λ2 )

 2/ 2! +R3 (λ2)
 3/3! +…+Rn(λ2 )

n/ n!

e elements, n defects:
Mn,k= 1+R1 λe+P2 (λe)

 2/2! +… + Rn( λe )
 n / n!       (41)

For the number of defects less than or equal to the
number of elements per block, the die is always
repairable, i.e., R n  =1 for all terms with n ≤ e.

On the other hand, if a die has n defects, where
n  > e x b, the die is never repairable. The improvement
factor formula is then written as

1 element, n ≤ 1 defects:
Mn,1= 1+ λ1

2 elements, n ≤ 2 defects:
Mn,2= 1+ λ2 + ( λ2 )

2 / 2!

e elements, e  < n ≤   e x b defects:
Mn,e= 1+ λe+ (λe)

 2 / 2!  +…+  ( λe )
 e / e! + Re +1

( λe)
 e+1 / e+1! …+ Rn  ( λe )

n / n! (42)

where R n follows the expression given by equation (31).

Next the effect of increasing the number of blocks per
memory area on the redundant yield is studied. Dividing
the memory area into a larger number of blocks also
increases the chance for repair, since each block is
accompanied by one redundant element. However, there
is a certain maximum number of blocks, after which the
increase in improvement is negligible, since  the larger
order terms in the series start to diminish. In this
analysis, the total number of subarrays and Farea, are kept
constant, but the size of the subarray is changed
depending on how the memory  area is divided. The
number of redundant elements per block e is still one.

The general formula, equation (35), is used here, where
the number of blocks b is changed in the repair
probability term R n  given by equation (31).

Results and Discussion
This report describes a model that calculates the
redundancy yield. The amount of improvement depends
on some key factors: the repairable area, available
redundant elements, defect density and types of defects
and their distribution on the die. The memory area is the
area that contributes to redundancy, since the rest of the
die area cannot be fixed and has to be functional. Only
the random defect density is considered here as the defect
category that is potentially repairable. The number of
available redundant elements also determines how much
improvement can be gained. If there is one redundant
element per memory block, only one defect per block can
be fixed.  The type of defects is another important factor
in estimating the redundancy yield. Raster defects such as
bits, columns or rows (where bits can represent
individual or clustered defects as long as they fall in the
same memory block) are considered repairable.
Although the number of defects that could be fixed equals
the number of redundant elements available, those
defects have to follow a certain distribution on the
memory array according to the repair probability
described in the text.

Figures 2 through 4 show the improvement factor versus
the initial yield calculated by the three models: simple,
cumulative, and general. Data is compared to three
products from two different process generations.
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Figure 2:  Three formulas compared  to data
measured on product 1
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Comparing the formulas of the improvement factor, the
closest fit to the actual data was obtained when all the
factors affecting redundancy were  accounted for (general
model). The simple model underestimates the data, since
it assumes the repair of die with one defect only, which is
not the real case. The cumulative model is overestimating
the data. It considers all types of defects  and assumes all
of them are repairable, if their count is equal to or less
than the number of redundant elements. Thus, it ignores
the restriction of allowing one defect per block.
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Figure 3:  Three formulas compared  to data
measured on product 2
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Figure 4:  Three  formulas compared  to data
measured on product 3

The effect of varying the number of redundant elements
is shown in Figure 5. The effect of adding more
redundant elements is mostly seen at a lower initial yield.
It was observed that the improvement in yield is
significant up to two extra sets of elements for a die of
originally one redundant element per block. Beyond that,
the effect of decreasing the repairable area is dominating,
so that the two factors cancel out, and the overall
improvement is unchanged.
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Figure 5: Improvement  factor when extra redundant
elements at different initial yield Y are added

Figure 6 shows the effect of dividing the memory area
into a large number of blocks. Again the enhancement in
the yield multiplier is observed at a lower yield. With an
increase in  the initial yield, an improvement in the
redundant yield was observed up to six blocks. Beyond
that, the effect of more blocks per repairable area is not
noticeable, since the higher order terms in the multiplier
formula are negligible and do not add extra value to the
yield multiplier.
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Figure 6: Improvement factor when  the number  of
memory blocks at different initial yield Y is increased

Conclusion
A model for calculating the redundancy yield is
developed and described in this paper. Poisson’s equation
plus the effect of some redundancy-influencing factors
are used to derive a general yield multiplier formula. The
memory area is considered the only portion of the die
area  where redundancy is applied. The random defect
density is used here as the only defect category that
contributes to redundancy. From the defect population,
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only a fraction of it can be repaired depending on the
nature of the defect. According to the  die design, the
number of repairable defects depends on the available
redundant elements per memory block. This means that
the number of defects must be below a certain value, and
the defects have to follow a certain distribution
throughout the memory area to enable redundancy. An
efficiency factor is introduced and empirically evaluated
to account for the repairable defects. Combining those
factors, a general formula is derived and shows good
agreement with the actual data. Knowing the properties
of a new product  and using the efficiency factor for the
process generation,  the redundancy yield of a new
product can be predicted. The formula can also be used to
study the impact of varying the number of redundant
elements and memory blocks on the final result. Thus, a
better design that optimizes the number of redundant
elements, memory size with respect to the total die area,
and the number of blocks in the memory area might
result in a more efficient redundancy scheme.
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