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Coat-and-print patterning of silver nanowires for flexible
and transparent electronics
Weiwei Li 1*, Azat Meredov1 and Atif Shamim1

Silver nanowires (Ag NWs) possess excellent optoelectronic properties, which have led to many technology-focused applications of
transparent and flexible electronics. Many of these applications require patterning of Ag NWs into desired shapes, for which mask-
based and printing-based techniques have been developed and widely used. However, there are still several limitations associated
to these techniques. These limitations, such as complicated patterning procedures, limited patterning area, and compromised
optical transparency, hamper the efficient fabrication of high-performance Ag NW patterns. Here, we propose a coat-and-print
approach for effectively patterning Ag NWs. We printed a polymer-based ink on the spin-coated Ag NW films. The ink acts as a
protective layer to help remove excess Ag NWs from the substrate and then dissolves itself into an organic solvent. In this way, we
can take advantage of both coating-based techniques (lead to Ag NWs with high transparency) and printing-based techniques
(efficiently pattern diverse shapes). The resultant Ag NW patterns exhibit comparable conductivity (sheet resistance: 7.1 to 30 Ohm/
sq) and transparency (transmittance: 84 to 95% at λ= 550 nm) to those made by conventional coating methods. In addition, the
patterned Ag NWs exhibit robust mechanical stability and reliability, surviving extensive bending and peeling tests. Due to higher
conductivity, efficient patterning ability and inherent transparency, this material system and application method is highly suitable
for transparent and flexible electronics. As a proof of concept, this research demonstrates a wide-band antenna, operating in the
mm-wave range that includes the 5G communication band. The proposed antenna exhibits a wide bandwidth of 26 GHz (from
17.9 GHz to 44 GHz), robust return loss under 1000 cyclic bending (bending radius of 3.5 mm), and decent transparency over the
entire visible wavelength (86.8% transmittance at λ= 550 nm). This work’s promising results indicate that this method can be
adapted for roll-to-roll manufacturing to efficiently produce patterned and optically transparent devices.
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INTRODUCTION
Transparent, flexible electronics have gained emerging attention
in a variety of fields, including optoelectronics, energy storages,
sensors, and light emitting displays.1–5 However, conventional
conductors, such as indium tin oxide (ITO), have long suffered
from high processing cost and lack of flexibility. Motivated by this
issue, researchers have developed many ITO alternatives by using
conductive materials with decreasing dimensions, including
nanoscale metal mesh,6–10 conductive polymer,11,12 metal nano-
wires,13–15 graphene,16–21 and carbon nanotubes.22–24 Among
these alternatives, silver nanowires (Ag NWs) are particularly
attractive due to their excellent electrical conductivity and
mechanical flexibility.25–29 In the past decade, tremendous efforts
have been made to synthesize Ag NWs with high aspect ratio
which is critical to the performance enhancement of Ag NWs-
based devices. Thus far, various synthesis methods have been
proposed, such as low-temperature,28 gentle reaction,25 multistep
growth,30,31 and hydrothermal reduction,32 leading to ultrahigh
aspect ratio of Ag NWs. Moreover, the resultant flexible Ag NW
films have simultaneously demonstrated remarkable transparency
and low sheet resistance,33–36 both of which are comparable and
even superior to the ITO films.
Many of the Ag NW-based devices, such as electrodes, circuits,

sensors, and thin film transistors, require Ag NW patterns on
desired substrates.37–39 For this purpose, two types of techniques
(i.e., mask-based and printing-based) are proposed and widely
used for the patterning of Ag NWs. However, there are still several

limitations to both methods. The mask-based patterning techni-
ques, such as photolithography40, stencil screen,39 wet/dry
transfer,37 and ultraviolet/ozone (UV/O3) irradiation,41–43 are
capable of producing highly transparent patterns, as this type of
techniques can take advantage of state-of-the-art Ag NWs with
high aspect ratio. However, mask use typically requires complex
and high-cost processes that yield limited patterning area, as well
as low patterning efficiency. By contrast, direct printing technol-
ogies offers roll-to-roll compatibility44–47 by which large-area,
arbitrary conductive patterns have been achieved in cost-effective
and time-effective way.48–50 However, the printing-based techni-
ques only work for high-concentration inks or short Ag NWs (i.e.,
NWs with aspect ratios of less than 50).44,47 Consequently, the
printed Ag NW patterns perform poorly in optical properties as
compared to the mask-based patterns.42–44,46,51 Therefore, the
efficient manufacturing of high-performance Ag NW patterns, on
which the success of Ag NW-based devices heavily hinges,
remains challenging.
In this work, we introduce a coat-and-print method for

manufacturing Ag NW patterns that offers a solution to the
challenges mentioned above. Instead of directly printing Ag NWs,
we pattern a polymer-based ink on the spin-coated Ag NW films
with the aid of inkjet printing. This polymeric pattern acts as a
protective layer that can help remove the excess Ag NWs from the
substrate and then dissolves in an organic solvent. We show that
the resultant Ag NW patterns can be as conductive and
transparent as the coating-based or mask-based patterns and be
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fabricated as efficiently as the inkjet-printed ones. We further
pattern the Ag NWs on a flexible substrate capable of sustaining
thousands of bending and peeling cycles. The combination of our
sample’s strong electrical performances and mechanical durability
using the coat-and-print technique makes them particularly
promising for the next-generation of flexible and transparent
electronics. As a proof of concept, this research demonstrated a
flexible and transparent antenna operating in the mm-wave
range, including the 5G communication band.

RESULTS
The Ag NWs used for the patterning process had a average
diameter of 27 ± 9 nm, and length of 31 ± 7 μm, which was
confirmed by the scanning electron microscope (SEM) images
presented in Fig. 1a and Fig. S1 in the Supporting Information. The
typical X-ray diffraction (XRD) pattern of the Ag NWs exhibited
four diffraction peaks indexed to the face-centered cubic Ag
without any impurities. In addition, the intensity of peak [111] is
much higher than those of [200], [220], and [311] due to the high
aspect ratio of the Ag NWs, which is ideal for our coat-and-print
method to build highly transparent and conductive Ag NW

patterns. However, such long Ag NWs are hard to print with an
inkjet printing technique, as the nozzle diameter (~21.5 μm) is
smaller than the length of Ag NWs, which may cause nozzle
clogging.
A schematic of the freeform coat-and-print patterning process is

presented in Fig. 1c. First, we deposited the Ag NW dispersion
onto clean substrates, such as glass and plastic polymers to form a
uniform and dense Ag NW network by simply drop casting or spin
coating. Such coating can maximize the performances of Ag NW
films in both low sheet resistance and high optical transparency.
Second, we printed a polymeric, protective layer onto the coated
Ag NW films using an inkjet printing technique. Here, we
developed a cheap poly(methyl methacrylate) (PMMA) ink (see
detailed ink formula and printing process in Experimental section)
because (i) strongly adheres to the substrates; (ii) it is not
dissolvable in water for the following wet wiping process; and (iii)
it is readily removable by an organic solvent. Third, the printed
protective layer was baked at 110 °C in an oven for 5 min to
evaporate solvents and form a uniform PMMA layer (Fig. S2a). The
unprotected Ag NWs could be easily erased from the substrate by
wiping with a wet tissue or peeling with tape, leaving the Ag NWs
on PMMA-patterned regions (Fig. S2b). Finally, we removed the
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Fig. 1 a SEM image and inset of (a) is a magnified SEM image of the Ag NWs. b XRD pattern of the synthesized Ag NWs. c Schematic diagram
of the coat-and-print patterning procedures; (i) depositing Ag NW by drop coating or spin coating on clean substrates to form uniform Ag NW
layer; (ii) inkjet printing of polymer ink to form desired patterns; (iii) removing excess Ag NWs with wet tissues or tapes; and (iv) removing
polymer by dissolving in organic solvents. Insets are digital photographs of the Ag NW ink and the PMMA ink used in the patterning process.
d LED light connected to the patterned transparent Ag NW circuits. The right panel displays the SEM images of the patterned Ag NW lines.
e The transmittance (T, at λ= 550 nm) as a function of sheet resistance (R) of the Ag NW films fabricated by coating, and coat-and-print
technique, as well as previously developed methods to prepare transparent electrodes. Inset depicts the photograph of one representative Ag
NW patterns on glass (T= 95%, R= 30 Ohm/sq) in front of KAUST logo.
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PMMA layer by immersing the sample into acetone for 5 min52

and completed the patterning processes (Fig. S2c). What should
be noted is that the etching time to dissolve the PMMA layer
highly depends on the solubility of PMMA in organic solvents and
the bath temperature. We can decrease the etching time to less
than 30 s in anisole and N,N-dimethylformamide (DMF) bath at
60 °C (Fig. S2d, e). Figure 1d demonstrates typical Ag NW patterns
on a flexible polyethylene terephthalate (PET) substrate, where
fine, micro-scale structures are designed and patterned on the Ag
NW networks as displayed in the magnified SEM images. These
patterning steps can be easily repeated on other substrates, such
as four-inch fused silica glass, 50 × 50mm2

flexible PET and 50 ×
50mm2 Kapton film, as depicted in Fig. S3 in the Supporting
Information, which demonstrates the patterned KAUST logo,
letters, serpentine lines, straight lines, capacitors, circles, stars,
and other complex drawings with clear edges and boundaries.
We further studied the electrical and optical performance of

various coated and patterned Ag NW films, which were controlled
by changing the coating cycles (one to five cycles) and Ag NW
concentration (0.5–1.5 mg/mL). The transmittance of the Ag NW
films changed from 84.2 to 95.6% when sheet resistance increased
from 7.1 to 36 Ohm/sq (square markers in Fig. 1e). As illustrated in
Fig. 1e, our coat-and-print samples (red markers) are nearly
identical to the originally coated ones (blue markers) in both

conductivity and transmittance, regardless of the Ag NW films
used. This result implies that the printed PMMA has been removed
during the patterning process and the extra processing in our
coat-and-print method causes no noticeable performance degra-
dation to the Ag NW films, indicating the stability and reliability of
the proposed patterning technique. Moreover, to achieve the
same sheet resistance, our coat-and-print Ag NW patterns feature
much higher optical transmittance than the patterns by previously
reported printing-based methods (Fig. 1e). The reason is
attributed to the ultrahigh aspect ratio of the Ag NWs (~1000)
used in this work, whereas only short nanowires (aspect ratio < 50)
can be used in the reported inkjet printing process.44,47 Moreover,
Ag NW films patterned by our method demonstrates comparable
electrical and optical performance to the reported methods, such
as photo mask patterning,43 pattern mask patterning,42 inkjet
printing,44 micro-contact printing,41 shadow mask patterning,53

and magnetic mask printing,54 as well as other transparent
electrodes, such as seed particle printing of metal alloys55 and
laser writing of Ag nanoparticles grid.10 We thus suggest that our
coat-and-print method can take advantage of both coating-based
techniques (can lead to patterns with high conductivity and
transparency) and printing-based techniques (can efficiently
pattern diverse shapes).
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Fig. 2 a SEM images of the patterned dots (diameter 60 μm), lines (80 μm in spacing), and cross lines (60 μm in width). All the unmarked scale
bars are 100 μm. b The line thickness of the patterned Ag NWs as a function of the printing passes. c The line width plotted as a function of
the interdrop spacing. Insets are SEM images of the patterned Ag NW lines. Scale bars are 100 μm. d Measured resistance with different line
length and various width from three separate Ag NW patterns. e Calculated sheet resistance plotted as a function of line width for the
patterned Ag NW lines. f Thickness and calculated electrical conductivity as a function of line width for the patterned Ag NW lines.
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To further highlight the cost-effective and time-effective
advantages of our coat-and-print method, we demonstrated the
patterning of Ag NWs in diverse shapes. Figures 2a and S4 display
the patterned Ag NW-based dots (diameter in 60 μm), lines (width
in 60 μm and spacing in 80 μm), cross lines (width in 60 μm), and

squares, circles, and complex drawings with clear edges and
boundaries. Essentially, the coat-and-print method is accessible to
arbitrary patterns by designing the digital files in commercial
software, such as AutoCAD and CorelDraw, or the pattern editor
built into the printer software. Notably, the thickness and
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Fig. 3 a The measured resistance as a function of bending radius from 18mm to 3.5 mm. The inset photographs show the bending motion of
our line patterns. b The normalized resistance plotted as a function of bending cycles for the patterned Ag NW lines with various line widths.
c The normalized resistance of the patterned Ag NW line (width: 1 mm) before and after coating with PVA as a protective layer. The
photograph displays the adhesion test with scotch tape on Ag NW lines with PVA layer.
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Fig. 4 a The measured and simulated reflection coefficient (S11) of the fabricated antenna. The inset photograph is a RF coplanar probe used
for the high-frequency characterizations. b The simulated antenna gain from 10 to 40 GHz. c The S11 of the antenna under bending test with
different bending radii and multi bending cycles. The flexible antenna demonstrates excellent stability even after 1000 cycles of bending with
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Beacon in the KAUST campus.
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transparency of these patterns are controlled by the concentration
of the Ag NW dispersion and coating parameters, and the spatial
resolution can be guaranteed by the inkjet printing.
Then, we focused on the basic line patterns and explored how

the line parameters affect the patterns’ overall electrical con-
ductivity. One important parameter in the coat-and-print method
is the printing passes of the PMMA layer: the width of the
patterned lines only fluctuated between 86 μm and 90 μm as the
number of printing passes increased (Fig. S5) while the resultant
thickness was significantly influenced (Fig. 2b). Specifically, the
thickness of the Ag NW lines increased from ~130 nm to ~420 nm
and became stable (~420 nm) after three printing passes. This is
because that PMMA layers obtained by one or two printing passes
were too thin, and thus could not provide sufficient protection for
Ag NWs. As a result, some Ag NWs were removed during the
follow up wiping process. In contrast, three printing passes were
enough to print protective layers to pattern the Ag NWs. In Fig. 2c,
we illustrated that the line width were easily controlled by the
drop spacing. A drop spacing in the inkjet printer means the
deposition distance of two droplets. When the drop spacing is
larger, the distance between two deposited ink droplets increases,
which results in a line with narrower width. For example, the
patterned line width decreased from 180 µm to 49 µm when the
drop spacing increased from 10 µm to 50 µm. SEM images (inset
of Fig. 2c) reveal the line width variation. It can also be seen that
the widths of these lines are quite uniform. We then investigated
the detailed electrical performance of the patterned lines with line
widths ranging from ~0.1 mm to ~4mm, and lengths ranging
from 5mm to 30mm. Figure 2d plots the measured resistance of
the Ag NW lines where error bars are created by three time
measurements on three separate samples with the same coating
and printing parameters. We found that the resistance increases
linearly with the line length for all samples, implying the
uniformity of the patterned lines using our proposed patterning
technique. Quantitatively, sheet resistance (Rs) of the printed lines
was calculated according to the measured resistance (R), line
width (w) and line length (l) through Rs= Rw/l. The calculated Rs
for samples with various line widths is displayed in Fig. 2e. The
sheet resistance was relatively stable (fluctuating between
2.8 Ohm/sq to 3.3 Ohm/sq) regardless of the line width. These
results again prove the uniformity of the patterned Ag NWs, which
is particularly essential for the reliability of Ag NW-based electrical
devices. We then characterized the electrical conductivity (σ) of
the patterned Ag NW lines using line width as a variable by
calculating σ= 1/(t Rs), where t is the thickness of Ag NW lines. As
Fig. 2f illustrates, for the patterned lines with different line widths,
the electrical conductivity had a small range (7–8 kS/cm), again
demonstrating the excellent repeatability of the proposed
patterning technique.
Having characterized the excellent electrical conductivity and

uniformity of the patterned Ag NW lines, we then evaluated the
electrical/mechanical stability. The patterned Ag NW lines were
firstly subjected to cyclic bending with different radii of curvature
and measured their resistance change. Figure 3a demonstrates
that the resistance of the patterned Ag NW lines with various
widths can nearly remain constant under a bending radius as low
as 3.5 mm. Such durability is further highlighted in Fig. 3b where
only slight changes in the resistance are observed for patterned
lines after 1000 bending cycles. The pristine Ag NW lines are easy
to fail in conductivity after performing tape test (Fig. 3c). To
further improve their resistance to wear and friction, 0.5%
polyvinyl alcohol (PVA) solution (water: ethanol= 1:1, weight
ratio) was spin-coated on the surface of the patterned Ag NW
lines. Consequently, the resistance of the patterned line was
largely maintained (the relative increase is ~20%) after 1000 tape-
peeling tests, as depicted in Fig. 3c.
The mechanical stability of our patterned Ag NWs, combined

with their excellent conductivity and transparency, makes them

particularly attractive for flexible electronic devices. To demon-
strate the potential applications of the proposed coat-and-print
technique for patterning Ag NWs, a flexible, transparent monopole
antenna for the applications of mm-wave, including 5G commu-
nication was fabricated and characterized. Figure S6 displays the
geometric parameters of the proposed radio frequency (RF)
antenna and the 3D model in the electromagnetic simulation
software (CST Microwave Studio). We used a triangular monopole
antenna with slots (width: 150 µm) and a slotted ground layer (to
improve transparency), sandwiched between a low-loss dielectric
substrate (tanδ= 0.0044 at 24 GHz) with a thickness of 50 µm. The
total size of the antenna is 12 × 12mm2. Figure 4a presents the
simulated (dashed line) and measured (solid line) reflection
coefficient (S11) of the monopole antenna, where we found a
match in the range of 17.9 to 40 GHz. The −10 dB bandwidth
covers the whole measurement range, indicating an ultra-wide
bandwidth, which is beneficial for the applications of 5G wireless
communication. To further evaluate the radiation performance of
the fabricated Ag NW monopole antenna, the realized antenna
gain was simulated and is dipicted in Fig. 4b. The Ag NW antenna
had a reasonable gain, varying from −1.7 to 1.2 dBi from 18 to
40 GHz, though the gain was lower than the same antenna made
by copper with a conductivity of 5.8 × 107 S/m and a maximum
gain of 3.5 dBi (Fig. S7 in Supporting Information).
We conclude our work by highlighting the robustly mechanical

flexibility and excellent optical transparency of the fabricated
antenna. As displayed in Fig. 4d, the measured S11 is almost
constant under the bending radii of 20 mm and 5mm. To further
prove the robustness of the monopole antenna under deforma-
tion, repetitive bending cycles with the radius of 3.5 mm were
performed, and the reflection coefficient of the antenna was
recorded after 1000 cycles. Figure 4c confirms that the −10 dB
bandwidth performed robustly over a range of 22 GHz without
any significant degradations, despite the S11 slightly shifting. This
result implies that the antenna has an excellent ability to maintain
conductive pathways under cyclic deformations. Furthermore, the
transmittance of the monopole antenna is presented in Fig. 4d,
with a flexible Ag NW antenna proves its strong optical
transparency with more than 70% transmittance over the entire
visible wavelength range (400–800 nm). Transmittance at the
wavelength of 550 nm is 86.8%, which is higher than the reported
transparent antennas, such as 75% for micro-metal mesh
conductive film-based antenna,56 80% for Ag-coated polyester-
based antenna,57 and 85% for graphene-based antenna.58

DISCUSSION
In this paper, we presented a reliable, low-cost coat-and-print
technique to pattern Ag NWs with the assistance of inkjet printing.
Attributed to the thin and long Ag NWs synthesized in this study,
the Ag NW films exhibited excellent conductivity and transmit-
tance compared to the printed transparent electrodes in the
literature. Various shapes with different sizes were successfully
patterned on rigid glass and flexible substrates with large area and
high precision. As a potential application of the proposed
patterning approach, flexible and transparent RF antenna was
demonstrated and experimentally verified. The antenna had an
ultra-wide bandwidth (22 GHz of the −10 dB bandwidth), reason-
able antenna gain (maximum gain: 1.2 dB), excellent robustness
(more than 1000 bending cycles with a radius of 3.5 mm), and
high optical transparency (more than 80% transmittance over the
visible range). We believe that the proposed coat-and-print
technique can enable fabrication of reliable, precise Ag NW
patterns in time-effective and cost-effective ways, and can be
extended to other nanomaterials, such as nanoparticles and
copper nanowires.
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METHODS
Synthesis and purification of Ag NWs
The Ag NWs with ultrahigh aspect ratios were synthesized using a
modified polyol reduction process. First, Ag nitrate (0.12 M, 10mL),
polyvinyl pyrrolidone (PVP, 60mM, 60mL), and cetrimonium bromide
(CTAB, 1 mL) were prepared in ethylene glycol at room temperature as
three separate solutions. In a typical synthesis procedure, the CTAB
solution was added to the PVP solution with vigorous stirring for 1 min.
Then, the mixed solution was transferred to a reactor preheated to 160 °C.
After gently stirring for 30min, the Ag nitrate solution was injected
dropwise into the mixed solution at a jetting rate of 1 mL/min. Another
60min were needed to complete the reaction. Afterward, two-times
volume of acetone was added to the cooled dispersion to precipitate the
Ag NWs. The product was re-dispersed into water and washed with
acetone three times until the supernatant was clear. Then, the product was
washed another two times with ethanol to replace the solvent, and re-
dispersed into ethanol with concentrations of 1.5 mg/mL, 0.75mg/mL, and
0.5 mg/mL. Finally, the dispersion was centrifuged at low speed (~600 rpm
for 1 min) to obtain well-dispersed Ag NW dispersion by pipetting the
supernatant.

Preparation of conductive Ag NW films
Four-inch glass with a thickness of 1 mm, 125-μm-thick PET and 50-μm-
thick Kapton were used as substrates in the experiment. First, the
substrates were carefully cleaned with deionized water and ethanol in the
sonication bath. Then they were dried with nitrogen. The obtained Ag NW
dispersion was deposited on the cleaned substrates by drop coating or
spin coating. The thickness of the Ag layer was determined by the volume
and concentration of the Ag NW dispersion and the coating cycles.

Patterning procedures of Ag NWs
The PMMA powder with a molar ratio of 120,000 was dissolved in a mixed
solvent containing anisole and dimethyl sulfoxide (weight ratio of 4:1) to
form a 5 wt% solution, which is ideal for inkjet printing. Afterward, 1.5 mL
of the freshly prepared PMMA was filtered through a 0.2 µm nylon filter
and then injected into the cartridge. A commercial piezoelectric inkjet
nozzle (Dimatix) with a diameter of 21 µm and a drop volume of 10 pL was
used to inkjet the PMMA solution onto prepared Ag NW films. The
temperature of platen was set at 45 °C to guarantee the uniform spreading
of PMMA drops on Ag NW films. Different patterns were designed either
through the Dimatix pattern editor or the commercial software Coredraw
and then directly printed. After depositing the PMMA protective layer, the
sample was placed into an oven at 110 °C for 5 min to evaporate the
solvents. Next, wet tissue was used to wipe the excess Ag NWs. Finally,
the sample was immersed in acetone for 5 min to dissolve PMMA, followed
by drying naturally to complete the patterning of Ag NWs.

Simulation and fabrication of the RF antenna
Before the fabrication, the antenna structures were optimized and the
optimal parameters were simulated in CST Microwave Studio to verify the
performance. The monopole antenna was simulated through a thin surface
impedance layer with a thickness of 500 nm and a conductivity of 7 × 105

S/m. A 50-µm-thick layer with a dielectric constant of 2.6 and loss tangent
of 0.0044 at 24 GHz was used as the dielectric substrate. The source was
molded as a discrete 50-Ohm port.
To fabricate the monopole antenna, Ag NW dispersion was coated on a

clean Preflex substrate (thickness: 0.05mm), dried naturally, and patterned
using the method described above. Then, the ground layer was patterned
with the same method. Finally, the fabricated antenna was baked in an
oven at 100 °C for 10min.

Characterization
The SEM images of the synthesized Ag NWs and the patterned Ag NW
films were taken using a scanning electron microscope (FEI NovaNano
FEG-SEM 630) after sputtering 3 nm Ir (Quorum Q150TS) to increase
conductivity. The crystallinity of the Ag NWs was examined using XRD
(Bruker D2 PHASER) in the range of 30–80° with a scanning intercept of
0.12 degree/s. The UV-vis absorption spectrum of the Ag NW dispersion
and prepared Ag NW films were obtained using a UV-vis spectro-
photometer (Thermo Evolution 600). The sheet resistances of the Ag NW
films were measured using a four-point probe system (CMT-SR2000N). A

vector network analyzer (Agilent N5225A) was used to obtain S11 of the
fabricated antenna.

DATA AVAILABILITY
The datasets generated during and/or analyzed during this study are available from
the corresponding author on reasonable request.
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